On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups
All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let 𝔉 be a class of groups....
Ausführliche Beschreibung
Autor*in: |
Zhang, Ch. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Ukrainian mathematical journal - Springer US, 1967, 70(2019), 12 vom: Mai, Seite 1966-1977 |
---|---|
Übergeordnetes Werk: |
volume:70 ; year:2019 ; number:12 ; month:05 ; pages:1966-1977 |
Links: |
---|
DOI / URN: |
10.1007/s11253-019-01619-6 |
---|
Katalog-ID: |
OLC205457628X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205457628X | ||
003 | DE-627 | ||
005 | 20230504065738.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11253-019-01619-6 |2 doi | |
035 | |a (DE-627)OLC205457628X | ||
035 | |a (DE-He213)s11253-019-01619-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Zhang, Ch. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2019 | ||
520 | |a All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let be a class of groups. Then we say that is $$ {\varSigma}_t^{\sigma } $$ -closed provided that contains each group G with subgroups A1, . . . , At whose indices ∣G : A1 ∣ , …, ∣ G : At∣ are pairwise σ -coprime. We study $$ {\varSigma}_t^{\sigma } $$ -closed classes of finite groups. | ||
700 | 1 | |a Skiba, A. N. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ukrainian mathematical journal |d Springer US, 1967 |g 70(2019), 12 vom: Mai, Seite 1966-1977 |w (DE-627)12993318X |w (DE-600)390019-8 |w (DE-576)015490556 |x 0041-5995 |7 nnns |
773 | 1 | 8 | |g volume:70 |g year:2019 |g number:12 |g month:05 |g pages:1966-1977 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11253-019-01619-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 70 |j 2019 |e 12 |c 05 |h 1966-1977 |
author_variant |
c z cz a n s an ans |
---|---|
matchkey_str |
article:00415995:2019----::nasgatimcoecassf |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s11253-019-01619-6 doi (DE-627)OLC205457628X (DE-He213)s11253-019-01619-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Zhang, Ch. verfasserin aut On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let 𝔉 be a class of groups. Then we say that 𝔉 is $$ {\varSigma}_t^{\sigma } $$ -closed provided that 𝔉 contains each group G with subgroups A1, . . . , At 𝜖 𝔉 whose indices ∣G : A1 ∣ , …, ∣ G : At∣ are pairwise σ -coprime. We study $$ {\varSigma}_t^{\sigma } $$ -closed classes of finite groups. Skiba, A. N. aut Enthalten in Ukrainian mathematical journal Springer US, 1967 70(2019), 12 vom: Mai, Seite 1966-1977 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:70 year:2019 number:12 month:05 pages:1966-1977 https://doi.org/10.1007/s11253-019-01619-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 70 2019 12 05 1966-1977 |
spelling |
10.1007/s11253-019-01619-6 doi (DE-627)OLC205457628X (DE-He213)s11253-019-01619-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Zhang, Ch. verfasserin aut On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let 𝔉 be a class of groups. Then we say that 𝔉 is $$ {\varSigma}_t^{\sigma } $$ -closed provided that 𝔉 contains each group G with subgroups A1, . . . , At 𝜖 𝔉 whose indices ∣G : A1 ∣ , …, ∣ G : At∣ are pairwise σ -coprime. We study $$ {\varSigma}_t^{\sigma } $$ -closed classes of finite groups. Skiba, A. N. aut Enthalten in Ukrainian mathematical journal Springer US, 1967 70(2019), 12 vom: Mai, Seite 1966-1977 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:70 year:2019 number:12 month:05 pages:1966-1977 https://doi.org/10.1007/s11253-019-01619-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 70 2019 12 05 1966-1977 |
allfields_unstemmed |
10.1007/s11253-019-01619-6 doi (DE-627)OLC205457628X (DE-He213)s11253-019-01619-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Zhang, Ch. verfasserin aut On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let 𝔉 be a class of groups. Then we say that 𝔉 is $$ {\varSigma}_t^{\sigma } $$ -closed provided that 𝔉 contains each group G with subgroups A1, . . . , At 𝜖 𝔉 whose indices ∣G : A1 ∣ , …, ∣ G : At∣ are pairwise σ -coprime. We study $$ {\varSigma}_t^{\sigma } $$ -closed classes of finite groups. Skiba, A. N. aut Enthalten in Ukrainian mathematical journal Springer US, 1967 70(2019), 12 vom: Mai, Seite 1966-1977 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:70 year:2019 number:12 month:05 pages:1966-1977 https://doi.org/10.1007/s11253-019-01619-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 70 2019 12 05 1966-1977 |
allfieldsGer |
10.1007/s11253-019-01619-6 doi (DE-627)OLC205457628X (DE-He213)s11253-019-01619-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Zhang, Ch. verfasserin aut On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let 𝔉 be a class of groups. Then we say that 𝔉 is $$ {\varSigma}_t^{\sigma } $$ -closed provided that 𝔉 contains each group G with subgroups A1, . . . , At 𝜖 𝔉 whose indices ∣G : A1 ∣ , …, ∣ G : At∣ are pairwise σ -coprime. We study $$ {\varSigma}_t^{\sigma } $$ -closed classes of finite groups. Skiba, A. N. aut Enthalten in Ukrainian mathematical journal Springer US, 1967 70(2019), 12 vom: Mai, Seite 1966-1977 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:70 year:2019 number:12 month:05 pages:1966-1977 https://doi.org/10.1007/s11253-019-01619-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 70 2019 12 05 1966-1977 |
allfieldsSound |
10.1007/s11253-019-01619-6 doi (DE-627)OLC205457628X (DE-He213)s11253-019-01619-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Zhang, Ch. verfasserin aut On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let 𝔉 be a class of groups. Then we say that 𝔉 is $$ {\varSigma}_t^{\sigma } $$ -closed provided that 𝔉 contains each group G with subgroups A1, . . . , At 𝜖 𝔉 whose indices ∣G : A1 ∣ , …, ∣ G : At∣ are pairwise σ -coprime. We study $$ {\varSigma}_t^{\sigma } $$ -closed classes of finite groups. Skiba, A. N. aut Enthalten in Ukrainian mathematical journal Springer US, 1967 70(2019), 12 vom: Mai, Seite 1966-1977 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:70 year:2019 number:12 month:05 pages:1966-1977 https://doi.org/10.1007/s11253-019-01619-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 70 2019 12 05 1966-1977 |
language |
English |
source |
Enthalten in Ukrainian mathematical journal 70(2019), 12 vom: Mai, Seite 1966-1977 volume:70 year:2019 number:12 month:05 pages:1966-1977 |
sourceStr |
Enthalten in Ukrainian mathematical journal 70(2019), 12 vom: Mai, Seite 1966-1977 volume:70 year:2019 number:12 month:05 pages:1966-1977 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Ukrainian mathematical journal |
authorswithroles_txt_mv |
Zhang, Ch. @@aut@@ Skiba, A. N. @@aut@@ |
publishDateDaySort_date |
2019-05-01T00:00:00Z |
hierarchy_top_id |
12993318X |
dewey-sort |
3510 |
id |
OLC205457628X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205457628X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065738.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11253-019-01619-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205457628X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11253-019-01619-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Ch.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let 𝔉 be a class of groups. Then we say that 𝔉 is $$ {\varSigma}_t^{\sigma } $$ -closed provided that 𝔉 contains each group G with subgroups A1, . . . , At 𝜖 𝔉 whose indices ∣G : A1 ∣ , …, ∣ G : At∣ are pairwise σ -coprime. We study $$ {\varSigma}_t^{\sigma } $$ -closed classes of finite groups.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skiba, A. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">70(2019), 12 vom: Mai, Seite 1966-1977</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:12</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1966-1977</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11253-019-01619-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2019</subfield><subfield code="e">12</subfield><subfield code="c">05</subfield><subfield code="h">1966-1977</subfield></datafield></record></collection>
|
author |
Zhang, Ch. |
spellingShingle |
Zhang, Ch. ddc 510 ssgn 17,1 On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups |
authorStr |
Zhang, Ch. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12993318X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0041-5995 |
topic_title |
510 VZ 17,1 ssgn On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Ukrainian mathematical journal |
hierarchy_parent_id |
12993318X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Ukrainian mathematical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 |
title |
On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups |
ctrlnum |
(DE-627)OLC205457628X (DE-He213)s11253-019-01619-6-p |
title_full |
On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups |
author_sort |
Zhang, Ch. |
journal |
Ukrainian mathematical journal |
journalStr |
Ukrainian mathematical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1966 |
author_browse |
Zhang, Ch. Skiba, A. N. |
container_volume |
70 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Zhang, Ch. |
doi_str_mv |
10.1007/s11253-019-01619-6 |
dewey-full |
510 |
title_sort |
on $$ {\varsigma}_t^{\sigma } $$ -closed classes of finite groups |
title_auth |
On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups |
abstract |
All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let 𝔉 be a class of groups. Then we say that 𝔉 is $$ {\varSigma}_t^{\sigma } $$ -closed provided that 𝔉 contains each group G with subgroups A1, . . . , At 𝜖 𝔉 whose indices ∣G : A1 ∣ , …, ∣ G : At∣ are pairwise σ -coprime. We study $$ {\varSigma}_t^{\sigma } $$ -closed classes of finite groups. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstractGer |
All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let 𝔉 be a class of groups. Then we say that 𝔉 is $$ {\varSigma}_t^{\sigma } $$ -closed provided that 𝔉 contains each group G with subgroups A1, . . . , At 𝜖 𝔉 whose indices ∣G : A1 ∣ , …, ∣ G : At∣ are pairwise σ -coprime. We study $$ {\varSigma}_t^{\sigma } $$ -closed classes of finite groups. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstract_unstemmed |
All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let 𝔉 be a class of groups. Then we say that 𝔉 is $$ {\varSigma}_t^{\sigma } $$ -closed provided that 𝔉 contains each group G with subgroups A1, . . . , At 𝜖 𝔉 whose indices ∣G : A1 ∣ , …, ∣ G : At∣ are pairwise σ -coprime. We study $$ {\varSigma}_t^{\sigma } $$ -closed classes of finite groups. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
12 |
title_short |
On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups |
url |
https://doi.org/10.1007/s11253-019-01619-6 |
remote_bool |
false |
author2 |
Skiba, A. N. |
author2Str |
Skiba, A. N. |
ppnlink |
12993318X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11253-019-01619-6 |
up_date |
2024-07-03T23:35:20.608Z |
_version_ |
1803602855846739968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205457628X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065738.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11253-019-01619-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205457628X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11253-019-01619-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Ch.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On $$ {\varSigma}_t^{\sigma } $$ -Closed Classes of Finite Groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">All analyzed groups are finite. Let σ = {σi| i ∈ I} be a partition of the set of all primes ℙ. If n is an integer, then the symbol σ(n) denotes a set {σi| σi ∩ π(n) ≠ ∅}. The integers n and m are called σ -coprime if σ(n) ∩ σ(m) = ∅ . Let t > 1 be a natural number and let 𝔉 be a class of groups. Then we say that 𝔉 is $$ {\varSigma}_t^{\sigma } $$ -closed provided that 𝔉 contains each group G with subgroups A1, . . . , At 𝜖 𝔉 whose indices ∣G : A1 ∣ , …, ∣ G : At∣ are pairwise σ -coprime. We study $$ {\varSigma}_t^{\sigma } $$ -closed classes of finite groups.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skiba, A. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">70(2019), 12 vom: Mai, Seite 1966-1977</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:12</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1966-1977</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11253-019-01619-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2019</subfield><subfield code="e">12</subfield><subfield code="c">05</subfield><subfield code="h">1966-1977</subfield></datafield></record></collection>
|
score |
7.399987 |