Measure-valued limits of interacting particle systems with k-nary interactions
Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of ran...
Ausführliche Beschreibung
Autor*in: |
Kolokoltsov, Vassili N. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2003 |
---|
Übergeordnetes Werk: |
Enthalten in: Probability theory and related fields - Springer-Verlag, 1986, 126(2003), 3 vom: Juni, Seite 364-394 |
---|---|
Übergeordnetes Werk: |
volume:126 ; year:2003 ; number:3 ; month:06 ; pages:364-394 |
Links: |
---|
DOI / URN: |
10.1007/s00440-003-0267-1 |
---|
Katalog-ID: |
OLC2054631612 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054631612 | ||
003 | DE-627 | ||
005 | 20230506013634.0 | ||
007 | tu | ||
008 | 200819s2003 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00440-003-0267-1 |2 doi | |
035 | |a (DE-627)OLC2054631612 | ||
035 | |a (DE-He213)s00440-003-0267-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Kolokoltsov, Vassili N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Measure-valued limits of interacting particle systems with k-nary interactions |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2003 | ||
520 | |a Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction. | ||
650 | 4 | |a Markov Process | |
650 | 4 | |a Particle System | |
650 | 4 | |a Polynomial Growth | |
650 | 4 | |a Interact Particle System | |
650 | 4 | |a Random Evolution | |
773 | 0 | 8 | |i Enthalten in |t Probability theory and related fields |d Springer-Verlag, 1986 |g 126(2003), 3 vom: Juni, Seite 364-394 |w (DE-627)129382779 |w (DE-600)165783-5 |w (DE-576)01476914X |x 0178-8051 |7 nnns |
773 | 1 | 8 | |g volume:126 |g year:2003 |g number:3 |g month:06 |g pages:364-394 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00440-003-0267-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 126 |j 2003 |e 3 |c 06 |h 364-394 |
author_variant |
v n k vn vnk |
---|---|
matchkey_str |
article:01788051:2003----::esrvlelmtoitrcigatceytmwt |
hierarchy_sort_str |
2003 |
publishDate |
2003 |
allfields |
10.1007/s00440-003-0267-1 doi (DE-627)OLC2054631612 (DE-He213)s00440-003-0267-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Kolokoltsov, Vassili N. verfasserin aut Measure-valued limits of interacting particle systems with k-nary interactions 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2003 Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction. Markov Process Particle System Polynomial Growth Interact Particle System Random Evolution Enthalten in Probability theory and related fields Springer-Verlag, 1986 126(2003), 3 vom: Juni, Seite 364-394 (DE-627)129382779 (DE-600)165783-5 (DE-576)01476914X 0178-8051 nnns volume:126 year:2003 number:3 month:06 pages:364-394 https://doi.org/10.1007/s00440-003-0267-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 AR 126 2003 3 06 364-394 |
spelling |
10.1007/s00440-003-0267-1 doi (DE-627)OLC2054631612 (DE-He213)s00440-003-0267-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Kolokoltsov, Vassili N. verfasserin aut Measure-valued limits of interacting particle systems with k-nary interactions 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2003 Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction. Markov Process Particle System Polynomial Growth Interact Particle System Random Evolution Enthalten in Probability theory and related fields Springer-Verlag, 1986 126(2003), 3 vom: Juni, Seite 364-394 (DE-627)129382779 (DE-600)165783-5 (DE-576)01476914X 0178-8051 nnns volume:126 year:2003 number:3 month:06 pages:364-394 https://doi.org/10.1007/s00440-003-0267-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 AR 126 2003 3 06 364-394 |
allfields_unstemmed |
10.1007/s00440-003-0267-1 doi (DE-627)OLC2054631612 (DE-He213)s00440-003-0267-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Kolokoltsov, Vassili N. verfasserin aut Measure-valued limits of interacting particle systems with k-nary interactions 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2003 Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction. Markov Process Particle System Polynomial Growth Interact Particle System Random Evolution Enthalten in Probability theory and related fields Springer-Verlag, 1986 126(2003), 3 vom: Juni, Seite 364-394 (DE-627)129382779 (DE-600)165783-5 (DE-576)01476914X 0178-8051 nnns volume:126 year:2003 number:3 month:06 pages:364-394 https://doi.org/10.1007/s00440-003-0267-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 AR 126 2003 3 06 364-394 |
allfieldsGer |
10.1007/s00440-003-0267-1 doi (DE-627)OLC2054631612 (DE-He213)s00440-003-0267-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Kolokoltsov, Vassili N. verfasserin aut Measure-valued limits of interacting particle systems with k-nary interactions 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2003 Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction. Markov Process Particle System Polynomial Growth Interact Particle System Random Evolution Enthalten in Probability theory and related fields Springer-Verlag, 1986 126(2003), 3 vom: Juni, Seite 364-394 (DE-627)129382779 (DE-600)165783-5 (DE-576)01476914X 0178-8051 nnns volume:126 year:2003 number:3 month:06 pages:364-394 https://doi.org/10.1007/s00440-003-0267-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 AR 126 2003 3 06 364-394 |
allfieldsSound |
10.1007/s00440-003-0267-1 doi (DE-627)OLC2054631612 (DE-He213)s00440-003-0267-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Kolokoltsov, Vassili N. verfasserin aut Measure-valued limits of interacting particle systems with k-nary interactions 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2003 Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction. Markov Process Particle System Polynomial Growth Interact Particle System Random Evolution Enthalten in Probability theory and related fields Springer-Verlag, 1986 126(2003), 3 vom: Juni, Seite 364-394 (DE-627)129382779 (DE-600)165783-5 (DE-576)01476914X 0178-8051 nnns volume:126 year:2003 number:3 month:06 pages:364-394 https://doi.org/10.1007/s00440-003-0267-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 AR 126 2003 3 06 364-394 |
language |
English |
source |
Enthalten in Probability theory and related fields 126(2003), 3 vom: Juni, Seite 364-394 volume:126 year:2003 number:3 month:06 pages:364-394 |
sourceStr |
Enthalten in Probability theory and related fields 126(2003), 3 vom: Juni, Seite 364-394 volume:126 year:2003 number:3 month:06 pages:364-394 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Markov Process Particle System Polynomial Growth Interact Particle System Random Evolution |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Probability theory and related fields |
authorswithroles_txt_mv |
Kolokoltsov, Vassili N. @@aut@@ |
publishDateDaySort_date |
2003-06-01T00:00:00Z |
hierarchy_top_id |
129382779 |
dewey-sort |
3510 |
id |
OLC2054631612 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054631612</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506013634.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00440-003-0267-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054631612</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00440-003-0267-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolokoltsov, Vassili N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measure-valued limits of interacting particle systems with k-nary interactions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov Process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial Growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interact Particle System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Evolution</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Probability theory and related fields</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">126(2003), 3 vom: Juni, Seite 364-394</subfield><subfield code="w">(DE-627)129382779</subfield><subfield code="w">(DE-600)165783-5</subfield><subfield code="w">(DE-576)01476914X</subfield><subfield code="x">0178-8051</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:3</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:364-394</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00440-003-0267-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="j">2003</subfield><subfield code="e">3</subfield><subfield code="c">06</subfield><subfield code="h">364-394</subfield></datafield></record></collection>
|
author |
Kolokoltsov, Vassili N. |
spellingShingle |
Kolokoltsov, Vassili N. ddc 510 ssgn 17,1 misc Markov Process misc Particle System misc Polynomial Growth misc Interact Particle System misc Random Evolution Measure-valued limits of interacting particle systems with k-nary interactions |
authorStr |
Kolokoltsov, Vassili N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129382779 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0178-8051 |
topic_title |
510 VZ 17,1 ssgn Measure-valued limits of interacting particle systems with k-nary interactions Markov Process Particle System Polynomial Growth Interact Particle System Random Evolution |
topic |
ddc 510 ssgn 17,1 misc Markov Process misc Particle System misc Polynomial Growth misc Interact Particle System misc Random Evolution |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Markov Process misc Particle System misc Polynomial Growth misc Interact Particle System misc Random Evolution |
topic_browse |
ddc 510 ssgn 17,1 misc Markov Process misc Particle System misc Polynomial Growth misc Interact Particle System misc Random Evolution |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Probability theory and related fields |
hierarchy_parent_id |
129382779 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Probability theory and related fields |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129382779 (DE-600)165783-5 (DE-576)01476914X |
title |
Measure-valued limits of interacting particle systems with k-nary interactions |
ctrlnum |
(DE-627)OLC2054631612 (DE-He213)s00440-003-0267-1-p |
title_full |
Measure-valued limits of interacting particle systems with k-nary interactions |
author_sort |
Kolokoltsov, Vassili N. |
journal |
Probability theory and related fields |
journalStr |
Probability theory and related fields |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
container_start_page |
364 |
author_browse |
Kolokoltsov, Vassili N. |
container_volume |
126 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Kolokoltsov, Vassili N. |
doi_str_mv |
10.1007/s00440-003-0267-1 |
dewey-full |
510 |
title_sort |
measure-valued limits of interacting particle systems with k-nary interactions |
title_auth |
Measure-valued limits of interacting particle systems with k-nary interactions |
abstract |
Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction. © Springer-Verlag Berlin Heidelberg 2003 |
abstractGer |
Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction. © Springer-Verlag Berlin Heidelberg 2003 |
abstract_unstemmed |
Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction. © Springer-Verlag Berlin Heidelberg 2003 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Measure-valued limits of interacting particle systems with k-nary interactions |
url |
https://doi.org/10.1007/s00440-003-0267-1 |
remote_bool |
false |
ppnlink |
129382779 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00440-003-0267-1 |
up_date |
2024-07-03T23:45:25.243Z |
_version_ |
1803603489844101120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054631612</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506013634.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00440-003-0267-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054631612</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00440-003-0267-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolokoltsov, Vassili N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measure-valued limits of interacting particle systems with k-nary interactions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov Process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial Growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interact Particle System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Evolution</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Probability theory and related fields</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">126(2003), 3 vom: Juni, Seite 364-394</subfield><subfield code="w">(DE-627)129382779</subfield><subfield code="w">(DE-600)165783-5</subfield><subfield code="w">(DE-576)01476914X</subfield><subfield code="x">0178-8051</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:3</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:364-394</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00440-003-0267-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="j">2003</subfield><subfield code="e">3</subfield><subfield code="c">06</subfield><subfield code="h">364-394</subfield></datafield></record></collection>
|
score |
7.400194 |