Improved Bounds for On-Line Load Balancing
Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the...
Ausführliche Beschreibung
Autor*in: |
Andrews, M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Anmerkung: |
© Springer-Verlag New York Inc. 1999 |
---|
Übergeordnetes Werk: |
Enthalten in: Algorithmica - Springer-Verlag, 1986, 23(1999), 4 vom: Apr., Seite 278-301 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:1999 ; number:4 ; month:04 ; pages:278-301 |
Links: |
---|
DOI / URN: |
10.1007/PL00009263 |
---|
Katalog-ID: |
OLC2054833150 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054833150 | ||
003 | DE-627 | ||
005 | 20230403073906.0 | ||
007 | tu | ||
008 | 200819s1999 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/PL00009263 |2 doi | |
035 | |a (DE-627)OLC2054833150 | ||
035 | |a (DE-He213)PL00009263-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 510 |a 004 |q VZ |
100 | 1 | |a Andrews, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improved Bounds for On-Line Load Balancing |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag New York Inc. 1999 | ||
520 | |a Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the sum of the weights of the jobs assigned to the machine divided by the machine capacity. The scheduler also has the option of preempting a job and reassigning it to another machine. Whenever a job is assigned or reassigned to a machine, the on-line algorithm incurs a reassignment cost depending on the job. For arbitrary reassignment costs and identical machines, we present an on-line algorithm with a competitive ratio of 3.5981 against currentload , i.e., the maximum load at any time is less than 3.5981 times the lowest achievable load at that time. Our algorithm also incurs a reassignment cost less than 6.8285 times the cost of assigning all the jobs. For arbitrary reassignment costs and related machines we present an algorithm with a competitive ratio of 32 and a reassignment factor of 79.4. We also describe algorithms with better performance guarantees for some special cases of the problem. | ||
700 | 1 | |a Goemans, M. X. |4 aut | |
700 | 1 | |a Zhang, L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Algorithmica |d Springer-Verlag, 1986 |g 23(1999), 4 vom: Apr., Seite 278-301 |w (DE-627)129197564 |w (DE-600)53958-2 |w (DE-576)014456958 |x 0178-4617 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:1999 |g number:4 |g month:04 |g pages:278-301 |
856 | 4 | 1 | |u https://doi.org/10.1007/PL00009263 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2045 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 23 |j 1999 |e 4 |c 04 |h 278-301 |
author_variant |
m a ma m x g mx mxg l z lz |
---|---|
matchkey_str |
article:01784617:1999----::mrvdonsoolnla |
hierarchy_sort_str |
1999 |
publishDate |
1999 |
allfields |
10.1007/PL00009263 doi (DE-627)OLC2054833150 (DE-He213)PL00009263-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Andrews, M. verfasserin aut Improved Bounds for On-Line Load Balancing 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1999 Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the sum of the weights of the jobs assigned to the machine divided by the machine capacity. The scheduler also has the option of preempting a job and reassigning it to another machine. Whenever a job is assigned or reassigned to a machine, the on-line algorithm incurs a reassignment cost depending on the job. For arbitrary reassignment costs and identical machines, we present an on-line algorithm with a competitive ratio of 3.5981 against currentload , i.e., the maximum load at any time is less than 3.5981 times the lowest achievable load at that time. Our algorithm also incurs a reassignment cost less than 6.8285 times the cost of assigning all the jobs. For arbitrary reassignment costs and related machines we present an algorithm with a competitive ratio of 32 and a reassignment factor of 79.4. We also describe algorithms with better performance guarantees for some special cases of the problem. Goemans, M. X. aut Zhang, L. aut Enthalten in Algorithmica Springer-Verlag, 1986 23(1999), 4 vom: Apr., Seite 278-301 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:23 year:1999 number:4 month:04 pages:278-301 https://doi.org/10.1007/PL00009263 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_110 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 AR 23 1999 4 04 278-301 |
spelling |
10.1007/PL00009263 doi (DE-627)OLC2054833150 (DE-He213)PL00009263-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Andrews, M. verfasserin aut Improved Bounds for On-Line Load Balancing 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1999 Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the sum of the weights of the jobs assigned to the machine divided by the machine capacity. The scheduler also has the option of preempting a job and reassigning it to another machine. Whenever a job is assigned or reassigned to a machine, the on-line algorithm incurs a reassignment cost depending on the job. For arbitrary reassignment costs and identical machines, we present an on-line algorithm with a competitive ratio of 3.5981 against currentload , i.e., the maximum load at any time is less than 3.5981 times the lowest achievable load at that time. Our algorithm also incurs a reassignment cost less than 6.8285 times the cost of assigning all the jobs. For arbitrary reassignment costs and related machines we present an algorithm with a competitive ratio of 32 and a reassignment factor of 79.4. We also describe algorithms with better performance guarantees for some special cases of the problem. Goemans, M. X. aut Zhang, L. aut Enthalten in Algorithmica Springer-Verlag, 1986 23(1999), 4 vom: Apr., Seite 278-301 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:23 year:1999 number:4 month:04 pages:278-301 https://doi.org/10.1007/PL00009263 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_110 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 AR 23 1999 4 04 278-301 |
allfields_unstemmed |
10.1007/PL00009263 doi (DE-627)OLC2054833150 (DE-He213)PL00009263-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Andrews, M. verfasserin aut Improved Bounds for On-Line Load Balancing 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1999 Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the sum of the weights of the jobs assigned to the machine divided by the machine capacity. The scheduler also has the option of preempting a job and reassigning it to another machine. Whenever a job is assigned or reassigned to a machine, the on-line algorithm incurs a reassignment cost depending on the job. For arbitrary reassignment costs and identical machines, we present an on-line algorithm with a competitive ratio of 3.5981 against currentload , i.e., the maximum load at any time is less than 3.5981 times the lowest achievable load at that time. Our algorithm also incurs a reassignment cost less than 6.8285 times the cost of assigning all the jobs. For arbitrary reassignment costs and related machines we present an algorithm with a competitive ratio of 32 and a reassignment factor of 79.4. We also describe algorithms with better performance guarantees for some special cases of the problem. Goemans, M. X. aut Zhang, L. aut Enthalten in Algorithmica Springer-Verlag, 1986 23(1999), 4 vom: Apr., Seite 278-301 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:23 year:1999 number:4 month:04 pages:278-301 https://doi.org/10.1007/PL00009263 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_110 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 AR 23 1999 4 04 278-301 |
allfieldsGer |
10.1007/PL00009263 doi (DE-627)OLC2054833150 (DE-He213)PL00009263-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Andrews, M. verfasserin aut Improved Bounds for On-Line Load Balancing 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1999 Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the sum of the weights of the jobs assigned to the machine divided by the machine capacity. The scheduler also has the option of preempting a job and reassigning it to another machine. Whenever a job is assigned or reassigned to a machine, the on-line algorithm incurs a reassignment cost depending on the job. For arbitrary reassignment costs and identical machines, we present an on-line algorithm with a competitive ratio of 3.5981 against currentload , i.e., the maximum load at any time is less than 3.5981 times the lowest achievable load at that time. Our algorithm also incurs a reassignment cost less than 6.8285 times the cost of assigning all the jobs. For arbitrary reassignment costs and related machines we present an algorithm with a competitive ratio of 32 and a reassignment factor of 79.4. We also describe algorithms with better performance guarantees for some special cases of the problem. Goemans, M. X. aut Zhang, L. aut Enthalten in Algorithmica Springer-Verlag, 1986 23(1999), 4 vom: Apr., Seite 278-301 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:23 year:1999 number:4 month:04 pages:278-301 https://doi.org/10.1007/PL00009263 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_110 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 AR 23 1999 4 04 278-301 |
allfieldsSound |
10.1007/PL00009263 doi (DE-627)OLC2054833150 (DE-He213)PL00009263-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Andrews, M. verfasserin aut Improved Bounds for On-Line Load Balancing 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1999 Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the sum of the weights of the jobs assigned to the machine divided by the machine capacity. The scheduler also has the option of preempting a job and reassigning it to another machine. Whenever a job is assigned or reassigned to a machine, the on-line algorithm incurs a reassignment cost depending on the job. For arbitrary reassignment costs and identical machines, we present an on-line algorithm with a competitive ratio of 3.5981 against currentload , i.e., the maximum load at any time is less than 3.5981 times the lowest achievable load at that time. Our algorithm also incurs a reassignment cost less than 6.8285 times the cost of assigning all the jobs. For arbitrary reassignment costs and related machines we present an algorithm with a competitive ratio of 32 and a reassignment factor of 79.4. We also describe algorithms with better performance guarantees for some special cases of the problem. Goemans, M. X. aut Zhang, L. aut Enthalten in Algorithmica Springer-Verlag, 1986 23(1999), 4 vom: Apr., Seite 278-301 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:23 year:1999 number:4 month:04 pages:278-301 https://doi.org/10.1007/PL00009263 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_110 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 AR 23 1999 4 04 278-301 |
language |
English |
source |
Enthalten in Algorithmica 23(1999), 4 vom: Apr., Seite 278-301 volume:23 year:1999 number:4 month:04 pages:278-301 |
sourceStr |
Enthalten in Algorithmica 23(1999), 4 vom: Apr., Seite 278-301 volume:23 year:1999 number:4 month:04 pages:278-301 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Algorithmica |
authorswithroles_txt_mv |
Andrews, M. @@aut@@ Goemans, M. X. @@aut@@ Zhang, L. @@aut@@ |
publishDateDaySort_date |
1999-04-01T00:00:00Z |
hierarchy_top_id |
129197564 |
dewey-sort |
14 |
id |
OLC2054833150 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054833150</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403073906.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/PL00009263</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054833150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)PL00009263-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andrews, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved Bounds for On-Line Load Balancing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag New York Inc. 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the sum of the weights of the jobs assigned to the machine divided by the machine capacity. The scheduler also has the option of preempting a job and reassigning it to another machine. Whenever a job is assigned or reassigned to a machine, the on-line algorithm incurs a reassignment cost depending on the job. For arbitrary reassignment costs and identical machines, we present an on-line algorithm with a competitive ratio of 3.5981 against currentload , i.e., the maximum load at any time is less than 3.5981 times the lowest achievable load at that time. Our algorithm also incurs a reassignment cost less than 6.8285 times the cost of assigning all the jobs. For arbitrary reassignment costs and related machines we present an algorithm with a competitive ratio of 32 and a reassignment factor of 79.4. We also describe algorithms with better performance guarantees for some special cases of the problem.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goemans, M. X.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">23(1999), 4 vom: Apr., Seite 278-301</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:278-301</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/PL00009263</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">1999</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">278-301</subfield></datafield></record></collection>
|
author |
Andrews, M. |
spellingShingle |
Andrews, M. ddc 004 ddc 510 Improved Bounds for On-Line Load Balancing |
authorStr |
Andrews, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129197564 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0178-4617 |
topic_title |
004 VZ 510 004 VZ Improved Bounds for On-Line Load Balancing |
topic |
ddc 004 ddc 510 |
topic_unstemmed |
ddc 004 ddc 510 |
topic_browse |
ddc 004 ddc 510 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algorithmica |
hierarchy_parent_id |
129197564 |
dewey-tens |
000 - Computer science, knowledge & systems 510 - Mathematics |
hierarchy_top_title |
Algorithmica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 |
title |
Improved Bounds for On-Line Load Balancing |
ctrlnum |
(DE-627)OLC2054833150 (DE-He213)PL00009263-p |
title_full |
Improved Bounds for On-Line Load Balancing |
author_sort |
Andrews, M. |
journal |
Algorithmica |
journalStr |
Algorithmica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
278 |
author_browse |
Andrews, M. Goemans, M. X. Zhang, L. |
container_volume |
23 |
class |
004 VZ 510 004 VZ |
format_se |
Aufsätze |
author-letter |
Andrews, M. |
doi_str_mv |
10.1007/PL00009263 |
dewey-full |
004 510 |
title_sort |
improved bounds for on-line load balancing |
title_auth |
Improved Bounds for On-Line Load Balancing |
abstract |
Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the sum of the weights of the jobs assigned to the machine divided by the machine capacity. The scheduler also has the option of preempting a job and reassigning it to another machine. Whenever a job is assigned or reassigned to a machine, the on-line algorithm incurs a reassignment cost depending on the job. For arbitrary reassignment costs and identical machines, we present an on-line algorithm with a competitive ratio of 3.5981 against currentload , i.e., the maximum load at any time is less than 3.5981 times the lowest achievable load at that time. Our algorithm also incurs a reassignment cost less than 6.8285 times the cost of assigning all the jobs. For arbitrary reassignment costs and related machines we present an algorithm with a competitive ratio of 32 and a reassignment factor of 79.4. We also describe algorithms with better performance guarantees for some special cases of the problem. © Springer-Verlag New York Inc. 1999 |
abstractGer |
Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the sum of the weights of the jobs assigned to the machine divided by the machine capacity. The scheduler also has the option of preempting a job and reassigning it to another machine. Whenever a job is assigned or reassigned to a machine, the on-line algorithm incurs a reassignment cost depending on the job. For arbitrary reassignment costs and identical machines, we present an on-line algorithm with a competitive ratio of 3.5981 against currentload , i.e., the maximum load at any time is less than 3.5981 times the lowest achievable load at that time. Our algorithm also incurs a reassignment cost less than 6.8285 times the cost of assigning all the jobs. For arbitrary reassignment costs and related machines we present an algorithm with a competitive ratio of 32 and a reassignment factor of 79.4. We also describe algorithms with better performance guarantees for some special cases of the problem. © Springer-Verlag New York Inc. 1999 |
abstract_unstemmed |
Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the sum of the weights of the jobs assigned to the machine divided by the machine capacity. The scheduler also has the option of preempting a job and reassigning it to another machine. Whenever a job is assigned or reassigned to a machine, the on-line algorithm incurs a reassignment cost depending on the job. For arbitrary reassignment costs and identical machines, we present an on-line algorithm with a competitive ratio of 3.5981 against currentload , i.e., the maximum load at any time is less than 3.5981 times the lowest achievable load at that time. Our algorithm also incurs a reassignment cost less than 6.8285 times the cost of assigning all the jobs. For arbitrary reassignment costs and related machines we present an algorithm with a competitive ratio of 32 and a reassignment factor of 79.4. We also describe algorithms with better performance guarantees for some special cases of the problem. © Springer-Verlag New York Inc. 1999 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_110 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
4 |
title_short |
Improved Bounds for On-Line Load Balancing |
url |
https://doi.org/10.1007/PL00009263 |
remote_bool |
false |
author2 |
Goemans, M. X. Zhang, L. |
author2Str |
Goemans, M. X. Zhang, L. |
ppnlink |
129197564 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/PL00009263 |
up_date |
2024-07-04T00:32:55.387Z |
_version_ |
1803606478436696064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054833150</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403073906.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/PL00009263</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054833150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)PL00009263-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andrews, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved Bounds for On-Line Load Balancing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag New York Inc. 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. We consider the following load balancing problem. Jobs arrive on-line and must be assigned to one of m machines thereby increasing the load on that machine by a certain weight. Jobs also depart on-line. The goal is to minimize the maximum load on any machine, the load being defined as the sum of the weights of the jobs assigned to the machine divided by the machine capacity. The scheduler also has the option of preempting a job and reassigning it to another machine. Whenever a job is assigned or reassigned to a machine, the on-line algorithm incurs a reassignment cost depending on the job. For arbitrary reassignment costs and identical machines, we present an on-line algorithm with a competitive ratio of 3.5981 against currentload , i.e., the maximum load at any time is less than 3.5981 times the lowest achievable load at that time. Our algorithm also incurs a reassignment cost less than 6.8285 times the cost of assigning all the jobs. For arbitrary reassignment costs and related machines we present an algorithm with a competitive ratio of 32 and a reassignment factor of 79.4. We also describe algorithms with better performance guarantees for some special cases of the problem.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goemans, M. X.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">23(1999), 4 vom: Apr., Seite 278-301</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:278-301</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/PL00009263</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">1999</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">278-301</subfield></datafield></record></collection>
|
score |
7.402876 |