Drawing Trees Symmetrically in Three Dimensions
Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing int...
Ausführliche Beschreibung
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag New York Inc. 2003 |
---|
Übergeordnetes Werk: |
Enthalten in: Algorithmica - Springer-Verlag, 1986, 36(2003), 2 vom: Juni, Seite 153-178 |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:2003 ; number:2 ; month:06 ; pages:153-178 |
Links: |
---|
DOI / URN: |
10.1007/s00453-002-1011-4 |
---|
Katalog-ID: |
OLC2054836486 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054836486 | ||
003 | DE-627 | ||
005 | 20230403073927.0 | ||
007 | tu | ||
008 | 200819s2003 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00453-002-1011-4 |2 doi | |
035 | |a (DE-627)OLC2054836486 | ||
035 | |a (DE-He213)s00453-002-1011-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 510 |a 004 |q VZ |
245 | 1 | 0 | |a Drawing Trees Symmetrically in Three Dimensions |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag New York Inc. 2003 | ||
520 | |a Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing into three dimensions. More specifically, the paper investigates the problem of drawing trees symmetrically in three dimensions. First, we suggest a model for drawing trees symmetrically in three dimensions. Based on this model, we present a linear time algorithm for finding the maximum number of three-dimensional symmetries in trees. We also present a three-dimensional symmetric drawing algorithm for trees. | ||
650 | 4 | |a Graph drawing | |
650 | 4 | |a Symmetry | |
650 | 4 | |a Tree | |
650 | 4 | |a Three dimensions | |
650 | 4 | |a Geometric automorphism | |
773 | 0 | 8 | |i Enthalten in |t Algorithmica |d Springer-Verlag, 1986 |g 36(2003), 2 vom: Juni, Seite 153-178 |w (DE-627)129197564 |w (DE-600)53958-2 |w (DE-576)014456958 |x 0178-4617 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:2003 |g number:2 |g month:06 |g pages:153-178 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00453-002-1011-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2045 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
951 | |a AR | ||
952 | |d 36 |j 2003 |e 2 |c 06 |h 153-178 |
matchkey_str |
article:01784617:2003----::rwntesymtialitr |
---|---|
hierarchy_sort_str |
2003 |
publishDate |
2003 |
allfields |
10.1007/s00453-002-1011-4 doi (DE-627)OLC2054836486 (DE-He213)s00453-002-1011-4-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Drawing Trees Symmetrically in Three Dimensions 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 2003 Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing into three dimensions. More specifically, the paper investigates the problem of drawing trees symmetrically in three dimensions. First, we suggest a model for drawing trees symmetrically in three dimensions. Based on this model, we present a linear time algorithm for finding the maximum number of three-dimensional symmetries in trees. We also present a three-dimensional symmetric drawing algorithm for trees. Graph drawing Symmetry Tree Three dimensions Geometric automorphism Enthalten in Algorithmica Springer-Verlag, 1986 36(2003), 2 vom: Juni, Seite 153-178 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:36 year:2003 number:2 month:06 pages:153-178 https://doi.org/10.1007/s00453-002-1011-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 AR 36 2003 2 06 153-178 |
spelling |
10.1007/s00453-002-1011-4 doi (DE-627)OLC2054836486 (DE-He213)s00453-002-1011-4-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Drawing Trees Symmetrically in Three Dimensions 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 2003 Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing into three dimensions. More specifically, the paper investigates the problem of drawing trees symmetrically in three dimensions. First, we suggest a model for drawing trees symmetrically in three dimensions. Based on this model, we present a linear time algorithm for finding the maximum number of three-dimensional symmetries in trees. We also present a three-dimensional symmetric drawing algorithm for trees. Graph drawing Symmetry Tree Three dimensions Geometric automorphism Enthalten in Algorithmica Springer-Verlag, 1986 36(2003), 2 vom: Juni, Seite 153-178 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:36 year:2003 number:2 month:06 pages:153-178 https://doi.org/10.1007/s00453-002-1011-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 AR 36 2003 2 06 153-178 |
allfields_unstemmed |
10.1007/s00453-002-1011-4 doi (DE-627)OLC2054836486 (DE-He213)s00453-002-1011-4-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Drawing Trees Symmetrically in Three Dimensions 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 2003 Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing into three dimensions. More specifically, the paper investigates the problem of drawing trees symmetrically in three dimensions. First, we suggest a model for drawing trees symmetrically in three dimensions. Based on this model, we present a linear time algorithm for finding the maximum number of three-dimensional symmetries in trees. We also present a three-dimensional symmetric drawing algorithm for trees. Graph drawing Symmetry Tree Three dimensions Geometric automorphism Enthalten in Algorithmica Springer-Verlag, 1986 36(2003), 2 vom: Juni, Seite 153-178 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:36 year:2003 number:2 month:06 pages:153-178 https://doi.org/10.1007/s00453-002-1011-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 AR 36 2003 2 06 153-178 |
allfieldsGer |
10.1007/s00453-002-1011-4 doi (DE-627)OLC2054836486 (DE-He213)s00453-002-1011-4-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Drawing Trees Symmetrically in Three Dimensions 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 2003 Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing into three dimensions. More specifically, the paper investigates the problem of drawing trees symmetrically in three dimensions. First, we suggest a model for drawing trees symmetrically in three dimensions. Based on this model, we present a linear time algorithm for finding the maximum number of three-dimensional symmetries in trees. We also present a three-dimensional symmetric drawing algorithm for trees. Graph drawing Symmetry Tree Three dimensions Geometric automorphism Enthalten in Algorithmica Springer-Verlag, 1986 36(2003), 2 vom: Juni, Seite 153-178 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:36 year:2003 number:2 month:06 pages:153-178 https://doi.org/10.1007/s00453-002-1011-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 AR 36 2003 2 06 153-178 |
allfieldsSound |
10.1007/s00453-002-1011-4 doi (DE-627)OLC2054836486 (DE-He213)s00453-002-1011-4-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Drawing Trees Symmetrically in Three Dimensions 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 2003 Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing into three dimensions. More specifically, the paper investigates the problem of drawing trees symmetrically in three dimensions. First, we suggest a model for drawing trees symmetrically in three dimensions. Based on this model, we present a linear time algorithm for finding the maximum number of three-dimensional symmetries in trees. We also present a three-dimensional symmetric drawing algorithm for trees. Graph drawing Symmetry Tree Three dimensions Geometric automorphism Enthalten in Algorithmica Springer-Verlag, 1986 36(2003), 2 vom: Juni, Seite 153-178 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:36 year:2003 number:2 month:06 pages:153-178 https://doi.org/10.1007/s00453-002-1011-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 AR 36 2003 2 06 153-178 |
language |
English |
source |
Enthalten in Algorithmica 36(2003), 2 vom: Juni, Seite 153-178 volume:36 year:2003 number:2 month:06 pages:153-178 |
sourceStr |
Enthalten in Algorithmica 36(2003), 2 vom: Juni, Seite 153-178 volume:36 year:2003 number:2 month:06 pages:153-178 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Graph drawing Symmetry Tree Three dimensions Geometric automorphism |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Algorithmica |
publishDateDaySort_date |
2003-06-01T00:00:00Z |
hierarchy_top_id |
129197564 |
dewey-sort |
14 |
id |
OLC2054836486 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054836486</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403073927.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-002-1011-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054836486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-002-1011-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Drawing Trees Symmetrically in Three Dimensions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag New York Inc. 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing into three dimensions. More specifically, the paper investigates the problem of drawing trees symmetrically in three dimensions. First, we suggest a model for drawing trees symmetrically in three dimensions. Based on this model, we present a linear time algorithm for finding the maximum number of three-dimensional symmetries in trees. We also present a three-dimensional symmetric drawing algorithm for trees.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph drawing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three dimensions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric automorphism</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">36(2003), 2 vom: Juni, Seite 153-178</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:153-178</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-002-1011-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2003</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">153-178</subfield></datafield></record></collection>
|
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129197564 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 510 - Mathematics |
delete_txt_mv |
keep |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0178-4617 |
topic_title |
004 VZ 510 004 VZ Drawing Trees Symmetrically in Three Dimensions Graph drawing Symmetry Tree Three dimensions Geometric automorphism |
topic |
ddc 004 ddc 510 misc Graph drawing misc Symmetry misc Tree misc Three dimensions misc Geometric automorphism |
spellingShingle |
ddc 004 ddc 510 misc Graph drawing misc Symmetry misc Tree misc Three dimensions misc Geometric automorphism Drawing Trees Symmetrically in Three Dimensions |
topic_unstemmed |
ddc 004 ddc 510 misc Graph drawing misc Symmetry misc Tree misc Three dimensions misc Geometric automorphism |
topic_browse |
ddc 004 ddc 510 misc Graph drawing misc Symmetry misc Tree misc Three dimensions misc Geometric automorphism |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algorithmica |
hierarchy_parent_id |
129197564 |
dewey-tens |
000 - Computer science, knowledge & systems 510 - Mathematics |
hierarchy_top_title |
Algorithmica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 |
title |
Drawing Trees Symmetrically in Three Dimensions |
ctrlnum |
(DE-627)OLC2054836486 (DE-He213)s00453-002-1011-4-p |
title_full |
Drawing Trees Symmetrically in Three Dimensions |
journal |
Algorithmica |
journalStr |
Algorithmica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
container_start_page |
153 |
container_volume |
36 |
class |
004 VZ 510 004 VZ |
format_se |
Aufsätze |
doi_str_mv |
10.1007/s00453-002-1011-4 |
dewey-full |
004 510 |
title_sort |
drawing trees symmetrically in three dimensions |
title_auth |
Drawing Trees Symmetrically in Three Dimensions |
abstract |
Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing into three dimensions. More specifically, the paper investigates the problem of drawing trees symmetrically in three dimensions. First, we suggest a model for drawing trees symmetrically in three dimensions. Based on this model, we present a linear time algorithm for finding the maximum number of three-dimensional symmetries in trees. We also present a three-dimensional symmetric drawing algorithm for trees. © Springer-Verlag New York Inc. 2003 |
abstractGer |
Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing into three dimensions. More specifically, the paper investigates the problem of drawing trees symmetrically in three dimensions. First, we suggest a model for drawing trees symmetrically in three dimensions. Based on this model, we present a linear time algorithm for finding the maximum number of three-dimensional symmetries in trees. We also present a three-dimensional symmetric drawing algorithm for trees. © Springer-Verlag New York Inc. 2003 |
abstract_unstemmed |
Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing into three dimensions. More specifically, the paper investigates the problem of drawing trees symmetrically in three dimensions. First, we suggest a model for drawing trees symmetrically in three dimensions. Based on this model, we present a linear time algorithm for finding the maximum number of three-dimensional symmetries in trees. We also present a three-dimensional symmetric drawing algorithm for trees. © Springer-Verlag New York Inc. 2003 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 |
container_issue |
2 |
title_short |
Drawing Trees Symmetrically in Three Dimensions |
url |
https://doi.org/10.1007/s00453-002-1011-4 |
remote_bool |
false |
ppnlink |
129197564 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00453-002-1011-4 |
up_date |
2024-07-04T00:33:32.601Z |
_version_ |
1803606517458403328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054836486</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403073927.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-002-1011-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054836486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-002-1011-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Drawing Trees Symmetrically in Three Dimensions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag New York Inc. 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Symmetric graph drawing enables a clear understanding of the structure of the graph. Previous work on symmetric graph drawing has focused on two dimensions. Symmetry in three dimensions is much richer than that of two dimensions. This is the first paper to extend symmetric graph drawing into three dimensions. More specifically, the paper investigates the problem of drawing trees symmetrically in three dimensions. First, we suggest a model for drawing trees symmetrically in three dimensions. Based on this model, we present a linear time algorithm for finding the maximum number of three-dimensional symmetries in trees. We also present a three-dimensional symmetric drawing algorithm for trees.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph drawing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three dimensions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric automorphism</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">36(2003), 2 vom: Juni, Seite 153-178</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:153-178</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-002-1011-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2003</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">153-178</subfield></datafield></record></collection>
|
score |
7.4020357 |