Asymptotics of Largest Components in Combinatorial Structures
Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m.
Autor*in: |
Omar, Mohamed [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer 2006 |
---|
Übergeordnetes Werk: |
Enthalten in: Algorithmica - Springer-Verlag, 1986, 46(2006), 3-4 vom: 27. Okt., Seite 493-503 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2006 ; number:3-4 ; day:27 ; month:10 ; pages:493-503 |
Links: |
---|
DOI / URN: |
10.1007/s00453-006-0103-y |
---|
Katalog-ID: |
OLC2054838691 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054838691 | ||
003 | DE-627 | ||
005 | 20230403073949.0 | ||
007 | tu | ||
008 | 200819s2006 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00453-006-0103-y |2 doi | |
035 | |a (DE-627)OLC2054838691 | ||
035 | |a (DE-He213)s00453-006-0103-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 510 |a 004 |q VZ |
100 | 1 | |a Omar, Mohamed |e verfasserin |4 aut | |
245 | 1 | 0 | |a Asymptotics of Largest Components in Combinatorial Structures |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer 2006 | ||
520 | |a Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m. | ||
650 | 4 | |a Large Component | |
650 | 4 | |a Combinatorial Structure | |
650 | 4 | |a Irreducible Polynomial | |
650 | 4 | |a Combinatorial Object | |
650 | 4 | |a Exponential Generate Function | |
700 | 1 | |a Panario, Daniel |4 aut | |
700 | 1 | |a Richmond, Bruce |4 aut | |
700 | 1 | |a Whitely, Jacki |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Algorithmica |d Springer-Verlag, 1986 |g 46(2006), 3-4 vom: 27. Okt., Seite 493-503 |w (DE-627)129197564 |w (DE-600)53958-2 |w (DE-576)014456958 |x 0178-4617 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2006 |g number:3-4 |g day:27 |g month:10 |g pages:493-503 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00453-006-0103-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2045 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4324 | ||
951 | |a AR | ||
952 | |d 46 |j 2006 |e 3-4 |b 27 |c 10 |h 493-503 |
author_variant |
m o mo d p dp b r br j w jw |
---|---|
matchkey_str |
article:01784617:2006----::smttcolretopnnsnobn |
hierarchy_sort_str |
2006 |
publishDate |
2006 |
allfields |
10.1007/s00453-006-0103-y doi (DE-627)OLC2054838691 (DE-He213)s00453-006-0103-y-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Omar, Mohamed verfasserin aut Asymptotics of Largest Components in Combinatorial Structures 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2006 Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m. Large Component Combinatorial Structure Irreducible Polynomial Combinatorial Object Exponential Generate Function Panario, Daniel aut Richmond, Bruce aut Whitely, Jacki aut Enthalten in Algorithmica Springer-Verlag, 1986 46(2006), 3-4 vom: 27. Okt., Seite 493-503 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:46 year:2006 number:3-4 day:27 month:10 pages:493-503 https://doi.org/10.1007/s00453-006-0103-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 AR 46 2006 3-4 27 10 493-503 |
spelling |
10.1007/s00453-006-0103-y doi (DE-627)OLC2054838691 (DE-He213)s00453-006-0103-y-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Omar, Mohamed verfasserin aut Asymptotics of Largest Components in Combinatorial Structures 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2006 Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m. Large Component Combinatorial Structure Irreducible Polynomial Combinatorial Object Exponential Generate Function Panario, Daniel aut Richmond, Bruce aut Whitely, Jacki aut Enthalten in Algorithmica Springer-Verlag, 1986 46(2006), 3-4 vom: 27. Okt., Seite 493-503 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:46 year:2006 number:3-4 day:27 month:10 pages:493-503 https://doi.org/10.1007/s00453-006-0103-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 AR 46 2006 3-4 27 10 493-503 |
allfields_unstemmed |
10.1007/s00453-006-0103-y doi (DE-627)OLC2054838691 (DE-He213)s00453-006-0103-y-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Omar, Mohamed verfasserin aut Asymptotics of Largest Components in Combinatorial Structures 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2006 Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m. Large Component Combinatorial Structure Irreducible Polynomial Combinatorial Object Exponential Generate Function Panario, Daniel aut Richmond, Bruce aut Whitely, Jacki aut Enthalten in Algorithmica Springer-Verlag, 1986 46(2006), 3-4 vom: 27. Okt., Seite 493-503 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:46 year:2006 number:3-4 day:27 month:10 pages:493-503 https://doi.org/10.1007/s00453-006-0103-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 AR 46 2006 3-4 27 10 493-503 |
allfieldsGer |
10.1007/s00453-006-0103-y doi (DE-627)OLC2054838691 (DE-He213)s00453-006-0103-y-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Omar, Mohamed verfasserin aut Asymptotics of Largest Components in Combinatorial Structures 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2006 Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m. Large Component Combinatorial Structure Irreducible Polynomial Combinatorial Object Exponential Generate Function Panario, Daniel aut Richmond, Bruce aut Whitely, Jacki aut Enthalten in Algorithmica Springer-Verlag, 1986 46(2006), 3-4 vom: 27. Okt., Seite 493-503 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:46 year:2006 number:3-4 day:27 month:10 pages:493-503 https://doi.org/10.1007/s00453-006-0103-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 AR 46 2006 3-4 27 10 493-503 |
allfieldsSound |
10.1007/s00453-006-0103-y doi (DE-627)OLC2054838691 (DE-He213)s00453-006-0103-y-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Omar, Mohamed verfasserin aut Asymptotics of Largest Components in Combinatorial Structures 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2006 Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m. Large Component Combinatorial Structure Irreducible Polynomial Combinatorial Object Exponential Generate Function Panario, Daniel aut Richmond, Bruce aut Whitely, Jacki aut Enthalten in Algorithmica Springer-Verlag, 1986 46(2006), 3-4 vom: 27. Okt., Seite 493-503 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:46 year:2006 number:3-4 day:27 month:10 pages:493-503 https://doi.org/10.1007/s00453-006-0103-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 AR 46 2006 3-4 27 10 493-503 |
language |
English |
source |
Enthalten in Algorithmica 46(2006), 3-4 vom: 27. Okt., Seite 493-503 volume:46 year:2006 number:3-4 day:27 month:10 pages:493-503 |
sourceStr |
Enthalten in Algorithmica 46(2006), 3-4 vom: 27. Okt., Seite 493-503 volume:46 year:2006 number:3-4 day:27 month:10 pages:493-503 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Large Component Combinatorial Structure Irreducible Polynomial Combinatorial Object Exponential Generate Function |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Algorithmica |
authorswithroles_txt_mv |
Omar, Mohamed @@aut@@ Panario, Daniel @@aut@@ Richmond, Bruce @@aut@@ Whitely, Jacki @@aut@@ |
publishDateDaySort_date |
2006-10-27T00:00:00Z |
hierarchy_top_id |
129197564 |
dewey-sort |
14 |
id |
OLC2054838691 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054838691</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403073949.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-006-0103-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054838691</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-006-0103-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Omar, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotics of Largest Components in Combinatorial Structures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large Component</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial Structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Irreducible Polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial Object</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential Generate Function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panario, Daniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Richmond, Bruce</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Whitely, Jacki</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">46(2006), 3-4 vom: 27. Okt., Seite 493-503</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:27</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:493-503</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-006-0103-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2006</subfield><subfield code="e">3-4</subfield><subfield code="b">27</subfield><subfield code="c">10</subfield><subfield code="h">493-503</subfield></datafield></record></collection>
|
author |
Omar, Mohamed |
spellingShingle |
Omar, Mohamed ddc 004 ddc 510 misc Large Component misc Combinatorial Structure misc Irreducible Polynomial misc Combinatorial Object misc Exponential Generate Function Asymptotics of Largest Components in Combinatorial Structures |
authorStr |
Omar, Mohamed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129197564 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0178-4617 |
topic_title |
004 VZ 510 004 VZ Asymptotics of Largest Components in Combinatorial Structures Large Component Combinatorial Structure Irreducible Polynomial Combinatorial Object Exponential Generate Function |
topic |
ddc 004 ddc 510 misc Large Component misc Combinatorial Structure misc Irreducible Polynomial misc Combinatorial Object misc Exponential Generate Function |
topic_unstemmed |
ddc 004 ddc 510 misc Large Component misc Combinatorial Structure misc Irreducible Polynomial misc Combinatorial Object misc Exponential Generate Function |
topic_browse |
ddc 004 ddc 510 misc Large Component misc Combinatorial Structure misc Irreducible Polynomial misc Combinatorial Object misc Exponential Generate Function |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algorithmica |
hierarchy_parent_id |
129197564 |
dewey-tens |
000 - Computer science, knowledge & systems 510 - Mathematics |
hierarchy_top_title |
Algorithmica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 |
title |
Asymptotics of Largest Components in Combinatorial Structures |
ctrlnum |
(DE-627)OLC2054838691 (DE-He213)s00453-006-0103-y-p |
title_full |
Asymptotics of Largest Components in Combinatorial Structures |
author_sort |
Omar, Mohamed |
journal |
Algorithmica |
journalStr |
Algorithmica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
493 |
author_browse |
Omar, Mohamed Panario, Daniel Richmond, Bruce Whitely, Jacki |
container_volume |
46 |
class |
004 VZ 510 004 VZ |
format_se |
Aufsätze |
author-letter |
Omar, Mohamed |
doi_str_mv |
10.1007/s00453-006-0103-y |
dewey-full |
004 510 |
title_sort |
asymptotics of largest components in combinatorial structures |
title_auth |
Asymptotics of Largest Components in Combinatorial Structures |
abstract |
Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m. © Springer 2006 |
abstractGer |
Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m. © Springer 2006 |
abstract_unstemmed |
Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m. © Springer 2006 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 |
container_issue |
3-4 |
title_short |
Asymptotics of Largest Components in Combinatorial Structures |
url |
https://doi.org/10.1007/s00453-006-0103-y |
remote_bool |
false |
author2 |
Panario, Daniel Richmond, Bruce Whitely, Jacki |
author2Str |
Panario, Daniel Richmond, Bruce Whitely, Jacki |
ppnlink |
129197564 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00453-006-0103-y |
up_date |
2024-07-04T00:34:00.039Z |
_version_ |
1803606546228183040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054838691</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403073949.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-006-0103-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054838691</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-006-0103-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Omar, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotics of Largest Components in Combinatorial Structures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given integers m and n, we study the probability that structures of size n have all components of size at most m. The results are given in term of a generalized Dickman function of n/m.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large Component</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial Structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Irreducible Polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial Object</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential Generate Function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panario, Daniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Richmond, Bruce</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Whitely, Jacki</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">46(2006), 3-4 vom: 27. Okt., Seite 493-503</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:27</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:493-503</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-006-0103-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2006</subfield><subfield code="e">3-4</subfield><subfield code="b">27</subfield><subfield code="c">10</subfield><subfield code="h">493-503</subfield></datafield></record></collection>
|
score |
7.400914 |