Quantum Information and the PCP Theorem
Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to rea...
Ausführliche Beschreibung
Autor*in: |
Raz, Ran [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Algorithmica - Springer-Verlag, 1986, 55(2007), 3 vom: 18. Sept., Seite 462-489 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2007 ; number:3 ; day:18 ; month:09 ; pages:462-489 |
Links: |
---|
DOI / URN: |
10.1007/s00453-007-9033-6 |
---|
Katalog-ID: |
OLC2054841188 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054841188 | ||
003 | DE-627 | ||
005 | 20230403074016.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00453-007-9033-6 |2 doi | |
035 | |a (DE-627)OLC2054841188 | ||
035 | |a (DE-He213)s00453-007-9033-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 510 |a 004 |q VZ |
100 | 1 | |a Raz, Ran |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantum Information and the PCP Theorem |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2007 | ||
520 | |a Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to read one block of the classical proof. This shows that if a short quantum witness is available then a (classical) PCP with only one query is possible. Our second result is that the class QIP/qpoly contains all languages. That is, for any language L (even non-recursive), the membership x∈L (for x of length n) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state |ΨL,n〉 (depending only on L and n). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. The advice |ΨL,n〉 given to the verifier can also be replaced by a classical probabilistic advice, as long as this advice is kept as a secret from the prover. Our result can hence be interpreted as: the class IP/rpoly contains all languages. For the proof of the second result, we introduce the quantum low-degree-extension of a string of bits. The main result requires an additional machinery of quantum low-degree-test. | ||
650 | 4 | |a Quantum computation | |
650 | 4 | |a Quantum information | |
650 | 4 | |a Quantum interactive proofs | |
650 | 4 | |a Quantum advice | |
650 | 4 | |a Probabilistically checkable proofs | |
650 | 4 | |a Low degree test | |
773 | 0 | 8 | |i Enthalten in |t Algorithmica |d Springer-Verlag, 1986 |g 55(2007), 3 vom: 18. Sept., Seite 462-489 |w (DE-627)129197564 |w (DE-600)53958-2 |w (DE-576)014456958 |x 0178-4617 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2007 |g number:3 |g day:18 |g month:09 |g pages:462-489 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00453-007-9033-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2045 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4324 | ||
951 | |a AR | ||
952 | |d 55 |j 2007 |e 3 |b 18 |c 09 |h 462-489 |
author_variant |
r r rr |
---|---|
matchkey_str |
article:01784617:2007----::unuifrainnte |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s00453-007-9033-6 doi (DE-627)OLC2054841188 (DE-He213)s00453-007-9033-6-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Raz, Ran verfasserin aut Quantum Information and the PCP Theorem 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to read one block of the classical proof. This shows that if a short quantum witness is available then a (classical) PCP with only one query is possible. Our second result is that the class QIP/qpoly contains all languages. That is, for any language L (even non-recursive), the membership x∈L (for x of length n) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state |ΨL,n〉 (depending only on L and n). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. The advice |ΨL,n〉 given to the verifier can also be replaced by a classical probabilistic advice, as long as this advice is kept as a secret from the prover. Our result can hence be interpreted as: the class IP/rpoly contains all languages. For the proof of the second result, we introduce the quantum low-degree-extension of a string of bits. The main result requires an additional machinery of quantum low-degree-test. Quantum computation Quantum information Quantum interactive proofs Quantum advice Probabilistically checkable proofs Low degree test Enthalten in Algorithmica Springer-Verlag, 1986 55(2007), 3 vom: 18. Sept., Seite 462-489 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:55 year:2007 number:3 day:18 month:09 pages:462-489 https://doi.org/10.1007/s00453-007-9033-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 AR 55 2007 3 18 09 462-489 |
spelling |
10.1007/s00453-007-9033-6 doi (DE-627)OLC2054841188 (DE-He213)s00453-007-9033-6-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Raz, Ran verfasserin aut Quantum Information and the PCP Theorem 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to read one block of the classical proof. This shows that if a short quantum witness is available then a (classical) PCP with only one query is possible. Our second result is that the class QIP/qpoly contains all languages. That is, for any language L (even non-recursive), the membership x∈L (for x of length n) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state |ΨL,n〉 (depending only on L and n). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. The advice |ΨL,n〉 given to the verifier can also be replaced by a classical probabilistic advice, as long as this advice is kept as a secret from the prover. Our result can hence be interpreted as: the class IP/rpoly contains all languages. For the proof of the second result, we introduce the quantum low-degree-extension of a string of bits. The main result requires an additional machinery of quantum low-degree-test. Quantum computation Quantum information Quantum interactive proofs Quantum advice Probabilistically checkable proofs Low degree test Enthalten in Algorithmica Springer-Verlag, 1986 55(2007), 3 vom: 18. Sept., Seite 462-489 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:55 year:2007 number:3 day:18 month:09 pages:462-489 https://doi.org/10.1007/s00453-007-9033-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 AR 55 2007 3 18 09 462-489 |
allfields_unstemmed |
10.1007/s00453-007-9033-6 doi (DE-627)OLC2054841188 (DE-He213)s00453-007-9033-6-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Raz, Ran verfasserin aut Quantum Information and the PCP Theorem 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to read one block of the classical proof. This shows that if a short quantum witness is available then a (classical) PCP with only one query is possible. Our second result is that the class QIP/qpoly contains all languages. That is, for any language L (even non-recursive), the membership x∈L (for x of length n) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state |ΨL,n〉 (depending only on L and n). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. The advice |ΨL,n〉 given to the verifier can also be replaced by a classical probabilistic advice, as long as this advice is kept as a secret from the prover. Our result can hence be interpreted as: the class IP/rpoly contains all languages. For the proof of the second result, we introduce the quantum low-degree-extension of a string of bits. The main result requires an additional machinery of quantum low-degree-test. Quantum computation Quantum information Quantum interactive proofs Quantum advice Probabilistically checkable proofs Low degree test Enthalten in Algorithmica Springer-Verlag, 1986 55(2007), 3 vom: 18. Sept., Seite 462-489 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:55 year:2007 number:3 day:18 month:09 pages:462-489 https://doi.org/10.1007/s00453-007-9033-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 AR 55 2007 3 18 09 462-489 |
allfieldsGer |
10.1007/s00453-007-9033-6 doi (DE-627)OLC2054841188 (DE-He213)s00453-007-9033-6-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Raz, Ran verfasserin aut Quantum Information and the PCP Theorem 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to read one block of the classical proof. This shows that if a short quantum witness is available then a (classical) PCP with only one query is possible. Our second result is that the class QIP/qpoly contains all languages. That is, for any language L (even non-recursive), the membership x∈L (for x of length n) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state |ΨL,n〉 (depending only on L and n). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. The advice |ΨL,n〉 given to the verifier can also be replaced by a classical probabilistic advice, as long as this advice is kept as a secret from the prover. Our result can hence be interpreted as: the class IP/rpoly contains all languages. For the proof of the second result, we introduce the quantum low-degree-extension of a string of bits. The main result requires an additional machinery of quantum low-degree-test. Quantum computation Quantum information Quantum interactive proofs Quantum advice Probabilistically checkable proofs Low degree test Enthalten in Algorithmica Springer-Verlag, 1986 55(2007), 3 vom: 18. Sept., Seite 462-489 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:55 year:2007 number:3 day:18 month:09 pages:462-489 https://doi.org/10.1007/s00453-007-9033-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 AR 55 2007 3 18 09 462-489 |
allfieldsSound |
10.1007/s00453-007-9033-6 doi (DE-627)OLC2054841188 (DE-He213)s00453-007-9033-6-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Raz, Ran verfasserin aut Quantum Information and the PCP Theorem 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to read one block of the classical proof. This shows that if a short quantum witness is available then a (classical) PCP with only one query is possible. Our second result is that the class QIP/qpoly contains all languages. That is, for any language L (even non-recursive), the membership x∈L (for x of length n) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state |ΨL,n〉 (depending only on L and n). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. The advice |ΨL,n〉 given to the verifier can also be replaced by a classical probabilistic advice, as long as this advice is kept as a secret from the prover. Our result can hence be interpreted as: the class IP/rpoly contains all languages. For the proof of the second result, we introduce the quantum low-degree-extension of a string of bits. The main result requires an additional machinery of quantum low-degree-test. Quantum computation Quantum information Quantum interactive proofs Quantum advice Probabilistically checkable proofs Low degree test Enthalten in Algorithmica Springer-Verlag, 1986 55(2007), 3 vom: 18. Sept., Seite 462-489 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:55 year:2007 number:3 day:18 month:09 pages:462-489 https://doi.org/10.1007/s00453-007-9033-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 AR 55 2007 3 18 09 462-489 |
language |
English |
source |
Enthalten in Algorithmica 55(2007), 3 vom: 18. Sept., Seite 462-489 volume:55 year:2007 number:3 day:18 month:09 pages:462-489 |
sourceStr |
Enthalten in Algorithmica 55(2007), 3 vom: 18. Sept., Seite 462-489 volume:55 year:2007 number:3 day:18 month:09 pages:462-489 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantum computation Quantum information Quantum interactive proofs Quantum advice Probabilistically checkable proofs Low degree test |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Algorithmica |
authorswithroles_txt_mv |
Raz, Ran @@aut@@ |
publishDateDaySort_date |
2007-09-18T00:00:00Z |
hierarchy_top_id |
129197564 |
dewey-sort |
14 |
id |
OLC2054841188 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054841188</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403074016.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-007-9033-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054841188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-007-9033-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raz, Ran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Information and the PCP Theorem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to read one block of the classical proof. This shows that if a short quantum witness is available then a (classical) PCP with only one query is possible. Our second result is that the class QIP/qpoly contains all languages. That is, for any language L (even non-recursive), the membership x∈L (for x of length n) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state |ΨL,n〉 (depending only on L and n). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. The advice |ΨL,n〉 given to the verifier can also be replaced by a classical probabilistic advice, as long as this advice is kept as a secret from the prover. Our result can hence be interpreted as: the class IP/rpoly contains all languages. For the proof of the second result, we introduce the quantum low-degree-extension of a string of bits. The main result requires an additional machinery of quantum low-degree-test.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum interactive proofs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum advice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilistically checkable proofs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low degree test</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">55(2007), 3 vom: 18. Sept., Seite 462-489</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:462-489</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-007-9033-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">09</subfield><subfield code="h">462-489</subfield></datafield></record></collection>
|
author |
Raz, Ran |
spellingShingle |
Raz, Ran ddc 004 ddc 510 misc Quantum computation misc Quantum information misc Quantum interactive proofs misc Quantum advice misc Probabilistically checkable proofs misc Low degree test Quantum Information and the PCP Theorem |
authorStr |
Raz, Ran |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129197564 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0178-4617 |
topic_title |
004 VZ 510 004 VZ Quantum Information and the PCP Theorem Quantum computation Quantum information Quantum interactive proofs Quantum advice Probabilistically checkable proofs Low degree test |
topic |
ddc 004 ddc 510 misc Quantum computation misc Quantum information misc Quantum interactive proofs misc Quantum advice misc Probabilistically checkable proofs misc Low degree test |
topic_unstemmed |
ddc 004 ddc 510 misc Quantum computation misc Quantum information misc Quantum interactive proofs misc Quantum advice misc Probabilistically checkable proofs misc Low degree test |
topic_browse |
ddc 004 ddc 510 misc Quantum computation misc Quantum information misc Quantum interactive proofs misc Quantum advice misc Probabilistically checkable proofs misc Low degree test |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algorithmica |
hierarchy_parent_id |
129197564 |
dewey-tens |
000 - Computer science, knowledge & systems 510 - Mathematics |
hierarchy_top_title |
Algorithmica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 |
title |
Quantum Information and the PCP Theorem |
ctrlnum |
(DE-627)OLC2054841188 (DE-He213)s00453-007-9033-6-p |
title_full |
Quantum Information and the PCP Theorem |
author_sort |
Raz, Ran |
journal |
Algorithmica |
journalStr |
Algorithmica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
462 |
author_browse |
Raz, Ran |
container_volume |
55 |
class |
004 VZ 510 004 VZ |
format_se |
Aufsätze |
author-letter |
Raz, Ran |
doi_str_mv |
10.1007/s00453-007-9033-6 |
dewey-full |
004 510 |
title_sort |
quantum information and the pcp theorem |
title_auth |
Quantum Information and the PCP Theorem |
abstract |
Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to read one block of the classical proof. This shows that if a short quantum witness is available then a (classical) PCP with only one query is possible. Our second result is that the class QIP/qpoly contains all languages. That is, for any language L (even non-recursive), the membership x∈L (for x of length n) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state |ΨL,n〉 (depending only on L and n). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. The advice |ΨL,n〉 given to the verifier can also be replaced by a classical probabilistic advice, as long as this advice is kept as a secret from the prover. Our result can hence be interpreted as: the class IP/rpoly contains all languages. For the proof of the second result, we introduce the quantum low-degree-extension of a string of bits. The main result requires an additional machinery of quantum low-degree-test. © Springer Science+Business Media, LLC 2007 |
abstractGer |
Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to read one block of the classical proof. This shows that if a short quantum witness is available then a (classical) PCP with only one query is possible. Our second result is that the class QIP/qpoly contains all languages. That is, for any language L (even non-recursive), the membership x∈L (for x of length n) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state |ΨL,n〉 (depending only on L and n). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. The advice |ΨL,n〉 given to the verifier can also be replaced by a classical probabilistic advice, as long as this advice is kept as a secret from the prover. Our result can hence be interpreted as: the class IP/rpoly contains all languages. For the proof of the second result, we introduce the quantum low-degree-extension of a string of bits. The main result requires an additional machinery of quantum low-degree-test. © Springer Science+Business Media, LLC 2007 |
abstract_unstemmed |
Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to read one block of the classical proof. This shows that if a short quantum witness is available then a (classical) PCP with only one query is possible. Our second result is that the class QIP/qpoly contains all languages. That is, for any language L (even non-recursive), the membership x∈L (for x of length n) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state |ΨL,n〉 (depending only on L and n). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. The advice |ΨL,n〉 given to the verifier can also be replaced by a classical probabilistic advice, as long as this advice is kept as a secret from the prover. Our result can hence be interpreted as: the class IP/rpoly contains all languages. For the proof of the second result, we introduce the quantum low-degree-extension of a string of bits. The main result requires an additional machinery of quantum low-degree-test. © Springer Science+Business Media, LLC 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_65 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2045 GBV_ILN_2190 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4324 |
container_issue |
3 |
title_short |
Quantum Information and the PCP Theorem |
url |
https://doi.org/10.1007/s00453-007-9033-6 |
remote_bool |
false |
ppnlink |
129197564 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00453-007-9033-6 |
up_date |
2024-07-04T00:34:30.867Z |
_version_ |
1803606578558926848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054841188</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403074016.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-007-9033-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054841188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-007-9033-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raz, Ran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Information and the PCP Theorem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Our main result is that the membership x∈SAT (for x of length n) can be proved by a logarithmic-size quantum state |Ψ〉, together with a polynomial-size classical proof consisting of blocks of length polylog(n) bits each, such that after measuring the state |Ψ〉 the verifier only needs to read one block of the classical proof. This shows that if a short quantum witness is available then a (classical) PCP with only one query is possible. Our second result is that the class QIP/qpoly contains all languages. That is, for any language L (even non-recursive), the membership x∈L (for x of length n) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state |ΨL,n〉 (depending only on L and n). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. The advice |ΨL,n〉 given to the verifier can also be replaced by a classical probabilistic advice, as long as this advice is kept as a secret from the prover. Our result can hence be interpreted as: the class IP/rpoly contains all languages. For the proof of the second result, we introduce the quantum low-degree-extension of a string of bits. The main result requires an additional machinery of quantum low-degree-test.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum interactive proofs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum advice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilistically checkable proofs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low degree test</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">55(2007), 3 vom: 18. Sept., Seite 462-489</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:462-489</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-007-9033-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">09</subfield><subfield code="h">462-489</subfield></datafield></record></collection>
|
score |
7.4016857 |