An Asymptotic Analysis of Labeled and Unlabeled k-Trees
Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are a...
Ausführliche Beschreibung
Autor*in: |
Drmota, Michael [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Algorithmica - Springer US, 1986, 75(2015), 4 vom: 23. Juli, Seite 579-605 |
---|---|
Übergeordnetes Werk: |
volume:75 ; year:2015 ; number:4 ; day:23 ; month:07 ; pages:579-605 |
Links: |
---|
DOI / URN: |
10.1007/s00453-015-0039-1 |
---|
Katalog-ID: |
OLC2054849510 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054849510 | ||
003 | DE-627 | ||
005 | 20230403074150.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00453-015-0039-1 |2 doi | |
035 | |a (DE-627)OLC2054849510 | ||
035 | |a (DE-He213)s00453-015-0039-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 510 |a 004 |q VZ |
100 | 1 | |a Drmota, Michael |e verfasserin |4 aut | |
245 | 1 | 0 | |a An Asymptotic Analysis of Labeled and Unlabeled k-Trees |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$. | ||
650 | 4 | |a -trees | |
650 | 4 | |a Generating function | |
650 | 4 | |a Singularity analysis | |
650 | 4 | |a Central limit theorem | |
700 | 1 | |a Jin, Emma Yu |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Algorithmica |d Springer US, 1986 |g 75(2015), 4 vom: 23. Juli, Seite 579-605 |w (DE-627)129197564 |w (DE-600)53958-2 |w (DE-576)014456958 |x 0178-4617 |7 nnns |
773 | 1 | 8 | |g volume:75 |g year:2015 |g number:4 |g day:23 |g month:07 |g pages:579-605 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00453-015-0039-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 75 |j 2015 |e 4 |b 23 |c 07 |h 579-605 |
author_variant |
m d md e y j ey eyj |
---|---|
matchkey_str |
article:01784617:2015----::nsmttcnlssfaeead |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00453-015-0039-1 doi (DE-627)OLC2054849510 (DE-He213)s00453-015-0039-1-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Drmota, Michael verfasserin aut An Asymptotic Analysis of Labeled and Unlabeled k-Trees 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$. -trees Generating function Singularity analysis Central limit theorem Jin, Emma Yu aut Enthalten in Algorithmica Springer US, 1986 75(2015), 4 vom: 23. Juli, Seite 579-605 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:75 year:2015 number:4 day:23 month:07 pages:579-605 https://doi.org/10.1007/s00453-015-0039-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 75 2015 4 23 07 579-605 |
spelling |
10.1007/s00453-015-0039-1 doi (DE-627)OLC2054849510 (DE-He213)s00453-015-0039-1-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Drmota, Michael verfasserin aut An Asymptotic Analysis of Labeled and Unlabeled k-Trees 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$. -trees Generating function Singularity analysis Central limit theorem Jin, Emma Yu aut Enthalten in Algorithmica Springer US, 1986 75(2015), 4 vom: 23. Juli, Seite 579-605 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:75 year:2015 number:4 day:23 month:07 pages:579-605 https://doi.org/10.1007/s00453-015-0039-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 75 2015 4 23 07 579-605 |
allfields_unstemmed |
10.1007/s00453-015-0039-1 doi (DE-627)OLC2054849510 (DE-He213)s00453-015-0039-1-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Drmota, Michael verfasserin aut An Asymptotic Analysis of Labeled and Unlabeled k-Trees 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$. -trees Generating function Singularity analysis Central limit theorem Jin, Emma Yu aut Enthalten in Algorithmica Springer US, 1986 75(2015), 4 vom: 23. Juli, Seite 579-605 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:75 year:2015 number:4 day:23 month:07 pages:579-605 https://doi.org/10.1007/s00453-015-0039-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 75 2015 4 23 07 579-605 |
allfieldsGer |
10.1007/s00453-015-0039-1 doi (DE-627)OLC2054849510 (DE-He213)s00453-015-0039-1-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Drmota, Michael verfasserin aut An Asymptotic Analysis of Labeled and Unlabeled k-Trees 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$. -trees Generating function Singularity analysis Central limit theorem Jin, Emma Yu aut Enthalten in Algorithmica Springer US, 1986 75(2015), 4 vom: 23. Juli, Seite 579-605 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:75 year:2015 number:4 day:23 month:07 pages:579-605 https://doi.org/10.1007/s00453-015-0039-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 75 2015 4 23 07 579-605 |
allfieldsSound |
10.1007/s00453-015-0039-1 doi (DE-627)OLC2054849510 (DE-He213)s00453-015-0039-1-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Drmota, Michael verfasserin aut An Asymptotic Analysis of Labeled and Unlabeled k-Trees 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$. -trees Generating function Singularity analysis Central limit theorem Jin, Emma Yu aut Enthalten in Algorithmica Springer US, 1986 75(2015), 4 vom: 23. Juli, Seite 579-605 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:75 year:2015 number:4 day:23 month:07 pages:579-605 https://doi.org/10.1007/s00453-015-0039-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 75 2015 4 23 07 579-605 |
language |
English |
source |
Enthalten in Algorithmica 75(2015), 4 vom: 23. Juli, Seite 579-605 volume:75 year:2015 number:4 day:23 month:07 pages:579-605 |
sourceStr |
Enthalten in Algorithmica 75(2015), 4 vom: 23. Juli, Seite 579-605 volume:75 year:2015 number:4 day:23 month:07 pages:579-605 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
-trees Generating function Singularity analysis Central limit theorem |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Algorithmica |
authorswithroles_txt_mv |
Drmota, Michael @@aut@@ Jin, Emma Yu @@aut@@ |
publishDateDaySort_date |
2015-07-23T00:00:00Z |
hierarchy_top_id |
129197564 |
dewey-sort |
14 |
id |
OLC2054849510 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054849510</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403074150.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-015-0039-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054849510</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-015-0039-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Drmota, Michael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Asymptotic Analysis of Labeled and Unlabeled k-Trees</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-trees</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generating function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularity analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Central limit theorem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Emma Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer US, 1986</subfield><subfield code="g">75(2015), 4 vom: 23. Juli, Seite 579-605</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">day:23</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:579-605</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-015-0039-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="b">23</subfield><subfield code="c">07</subfield><subfield code="h">579-605</subfield></datafield></record></collection>
|
author |
Drmota, Michael |
spellingShingle |
Drmota, Michael ddc 004 ddc 510 misc -trees misc Generating function misc Singularity analysis misc Central limit theorem An Asymptotic Analysis of Labeled and Unlabeled k-Trees |
authorStr |
Drmota, Michael |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129197564 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0178-4617 |
topic_title |
004 VZ 510 004 VZ An Asymptotic Analysis of Labeled and Unlabeled k-Trees -trees Generating function Singularity analysis Central limit theorem |
topic |
ddc 004 ddc 510 misc -trees misc Generating function misc Singularity analysis misc Central limit theorem |
topic_unstemmed |
ddc 004 ddc 510 misc -trees misc Generating function misc Singularity analysis misc Central limit theorem |
topic_browse |
ddc 004 ddc 510 misc -trees misc Generating function misc Singularity analysis misc Central limit theorem |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algorithmica |
hierarchy_parent_id |
129197564 |
dewey-tens |
000 - Computer science, knowledge & systems 510 - Mathematics |
hierarchy_top_title |
Algorithmica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 |
title |
An Asymptotic Analysis of Labeled and Unlabeled k-Trees |
ctrlnum |
(DE-627)OLC2054849510 (DE-He213)s00453-015-0039-1-p |
title_full |
An Asymptotic Analysis of Labeled and Unlabeled k-Trees |
author_sort |
Drmota, Michael |
journal |
Algorithmica |
journalStr |
Algorithmica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
579 |
author_browse |
Drmota, Michael Jin, Emma Yu |
container_volume |
75 |
class |
004 VZ 510 004 VZ |
format_se |
Aufsätze |
author-letter |
Drmota, Michael |
doi_str_mv |
10.1007/s00453-015-0039-1 |
dewey-full |
004 510 |
title_sort |
an asymptotic analysis of labeled and unlabeled k-trees |
title_auth |
An Asymptotic Analysis of Labeled and Unlabeled k-Trees |
abstract |
Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$. © Springer Science+Business Media New York 2015 |
abstractGer |
Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 |
container_issue |
4 |
title_short |
An Asymptotic Analysis of Labeled and Unlabeled k-Trees |
url |
https://doi.org/10.1007/s00453-015-0039-1 |
remote_bool |
false |
author2 |
Jin, Emma Yu |
author2Str |
Jin, Emma Yu |
ppnlink |
129197564 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00453-015-0039-1 |
up_date |
2024-07-04T00:36:16.049Z |
_version_ |
1803606688845004801 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054849510</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403074150.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-015-0039-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054849510</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-015-0039-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Drmota, Michael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Asymptotic Analysis of Labeled and Unlabeled k-Trees</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-trees</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generating function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularity analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Central limit theorem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Emma Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer US, 1986</subfield><subfield code="g">75(2015), 4 vom: 23. Juli, Seite 579-605</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">day:23</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:579-605</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-015-0039-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="b">23</subfield><subfield code="c">07</subfield><subfield code="h">579-605</subfield></datafield></record></collection>
|
score |
7.4021845 |