Direct Sum Fails for Zero-Error Average Communication
Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication...
Ausführliche Beschreibung
Autor*in: |
Kol, Gillat [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Algorithmica - Springer US, 1986, 76(2016), 3 vom: 28. März, Seite 782-795 |
---|---|
Übergeordnetes Werk: |
volume:76 ; year:2016 ; number:3 ; day:28 ; month:03 ; pages:782-795 |
Links: |
---|
DOI / URN: |
10.1007/s00453-016-0144-9 |
---|
Katalog-ID: |
OLC2054849790 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054849790 | ||
003 | DE-627 | ||
005 | 20230403074154.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00453-016-0144-9 |2 doi | |
035 | |a (DE-627)OLC2054849790 | ||
035 | |a (DE-He213)s00453-016-0144-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 510 |a 004 |q VZ |
100 | 1 | |a Kol, Gillat |e verfasserin |4 aut | |
245 | 1 | 0 | |a Direct Sum Fails for Zero-Error Average Communication |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2016 | ||
520 | |a Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication complexity equals external information complexity. In our examples the underlying distributions do not have full support. One interpretation of a distribution of non full support is as a promise given to the players (the players have a guarantee on their inputs). This brings up the issue of promise versus non-promise problems in this context. | ||
650 | 4 | |a Communication complexity | |
650 | 4 | |a Information complexity | |
650 | 4 | |a External information | |
650 | 4 | |a Amortized communication complexity | |
650 | 4 | |a Promise problems | |
700 | 1 | |a Moran, Shay |0 (orcid)0000-0002-8662-2737 |4 aut | |
700 | 1 | |a Shpilka, Amir |4 aut | |
700 | 1 | |a Yehudayoff, Amir |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Algorithmica |d Springer US, 1986 |g 76(2016), 3 vom: 28. März, Seite 782-795 |w (DE-627)129197564 |w (DE-600)53958-2 |w (DE-576)014456958 |x 0178-4617 |7 nnns |
773 | 1 | 8 | |g volume:76 |g year:2016 |g number:3 |g day:28 |g month:03 |g pages:782-795 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00453-016-0144-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 76 |j 2016 |e 3 |b 28 |c 03 |h 782-795 |
author_variant |
g k gk s m sm a s as a y ay |
---|---|
matchkey_str |
article:01784617:2016----::ietufisozrerrvrg |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00453-016-0144-9 doi (DE-627)OLC2054849790 (DE-He213)s00453-016-0144-9-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Kol, Gillat verfasserin aut Direct Sum Fails for Zero-Error Average Communication 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication complexity equals external information complexity. In our examples the underlying distributions do not have full support. One interpretation of a distribution of non full support is as a promise given to the players (the players have a guarantee on their inputs). This brings up the issue of promise versus non-promise problems in this context. Communication complexity Information complexity External information Amortized communication complexity Promise problems Moran, Shay (orcid)0000-0002-8662-2737 aut Shpilka, Amir aut Yehudayoff, Amir aut Enthalten in Algorithmica Springer US, 1986 76(2016), 3 vom: 28. März, Seite 782-795 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:76 year:2016 number:3 day:28 month:03 pages:782-795 https://doi.org/10.1007/s00453-016-0144-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 76 2016 3 28 03 782-795 |
spelling |
10.1007/s00453-016-0144-9 doi (DE-627)OLC2054849790 (DE-He213)s00453-016-0144-9-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Kol, Gillat verfasserin aut Direct Sum Fails for Zero-Error Average Communication 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication complexity equals external information complexity. In our examples the underlying distributions do not have full support. One interpretation of a distribution of non full support is as a promise given to the players (the players have a guarantee on their inputs). This brings up the issue of promise versus non-promise problems in this context. Communication complexity Information complexity External information Amortized communication complexity Promise problems Moran, Shay (orcid)0000-0002-8662-2737 aut Shpilka, Amir aut Yehudayoff, Amir aut Enthalten in Algorithmica Springer US, 1986 76(2016), 3 vom: 28. März, Seite 782-795 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:76 year:2016 number:3 day:28 month:03 pages:782-795 https://doi.org/10.1007/s00453-016-0144-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 76 2016 3 28 03 782-795 |
allfields_unstemmed |
10.1007/s00453-016-0144-9 doi (DE-627)OLC2054849790 (DE-He213)s00453-016-0144-9-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Kol, Gillat verfasserin aut Direct Sum Fails for Zero-Error Average Communication 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication complexity equals external information complexity. In our examples the underlying distributions do not have full support. One interpretation of a distribution of non full support is as a promise given to the players (the players have a guarantee on their inputs). This brings up the issue of promise versus non-promise problems in this context. Communication complexity Information complexity External information Amortized communication complexity Promise problems Moran, Shay (orcid)0000-0002-8662-2737 aut Shpilka, Amir aut Yehudayoff, Amir aut Enthalten in Algorithmica Springer US, 1986 76(2016), 3 vom: 28. März, Seite 782-795 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:76 year:2016 number:3 day:28 month:03 pages:782-795 https://doi.org/10.1007/s00453-016-0144-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 76 2016 3 28 03 782-795 |
allfieldsGer |
10.1007/s00453-016-0144-9 doi (DE-627)OLC2054849790 (DE-He213)s00453-016-0144-9-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Kol, Gillat verfasserin aut Direct Sum Fails for Zero-Error Average Communication 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication complexity equals external information complexity. In our examples the underlying distributions do not have full support. One interpretation of a distribution of non full support is as a promise given to the players (the players have a guarantee on their inputs). This brings up the issue of promise versus non-promise problems in this context. Communication complexity Information complexity External information Amortized communication complexity Promise problems Moran, Shay (orcid)0000-0002-8662-2737 aut Shpilka, Amir aut Yehudayoff, Amir aut Enthalten in Algorithmica Springer US, 1986 76(2016), 3 vom: 28. März, Seite 782-795 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:76 year:2016 number:3 day:28 month:03 pages:782-795 https://doi.org/10.1007/s00453-016-0144-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 76 2016 3 28 03 782-795 |
allfieldsSound |
10.1007/s00453-016-0144-9 doi (DE-627)OLC2054849790 (DE-He213)s00453-016-0144-9-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Kol, Gillat verfasserin aut Direct Sum Fails for Zero-Error Average Communication 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication complexity equals external information complexity. In our examples the underlying distributions do not have full support. One interpretation of a distribution of non full support is as a promise given to the players (the players have a guarantee on their inputs). This brings up the issue of promise versus non-promise problems in this context. Communication complexity Information complexity External information Amortized communication complexity Promise problems Moran, Shay (orcid)0000-0002-8662-2737 aut Shpilka, Amir aut Yehudayoff, Amir aut Enthalten in Algorithmica Springer US, 1986 76(2016), 3 vom: 28. März, Seite 782-795 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:76 year:2016 number:3 day:28 month:03 pages:782-795 https://doi.org/10.1007/s00453-016-0144-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 76 2016 3 28 03 782-795 |
language |
English |
source |
Enthalten in Algorithmica 76(2016), 3 vom: 28. März, Seite 782-795 volume:76 year:2016 number:3 day:28 month:03 pages:782-795 |
sourceStr |
Enthalten in Algorithmica 76(2016), 3 vom: 28. März, Seite 782-795 volume:76 year:2016 number:3 day:28 month:03 pages:782-795 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Communication complexity Information complexity External information Amortized communication complexity Promise problems |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Algorithmica |
authorswithroles_txt_mv |
Kol, Gillat @@aut@@ Moran, Shay @@aut@@ Shpilka, Amir @@aut@@ Yehudayoff, Amir @@aut@@ |
publishDateDaySort_date |
2016-03-28T00:00:00Z |
hierarchy_top_id |
129197564 |
dewey-sort |
14 |
id |
OLC2054849790 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054849790</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403074154.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-016-0144-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054849790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-016-0144-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kol, Gillat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Direct Sum Fails for Zero-Error Average Communication</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication complexity equals external information complexity. In our examples the underlying distributions do not have full support. One interpretation of a distribution of non full support is as a promise given to the players (the players have a guarantee on their inputs). This brings up the issue of promise versus non-promise problems in this context.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communication complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">External information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amortized communication complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Promise problems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moran, Shay</subfield><subfield code="0">(orcid)0000-0002-8662-2737</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shpilka, Amir</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yehudayoff, Amir</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer US, 1986</subfield><subfield code="g">76(2016), 3 vom: 28. März, Seite 782-795</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:28</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:782-795</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-016-0144-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">28</subfield><subfield code="c">03</subfield><subfield code="h">782-795</subfield></datafield></record></collection>
|
author |
Kol, Gillat |
spellingShingle |
Kol, Gillat ddc 004 ddc 510 misc Communication complexity misc Information complexity misc External information misc Amortized communication complexity misc Promise problems Direct Sum Fails for Zero-Error Average Communication |
authorStr |
Kol, Gillat |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129197564 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0178-4617 |
topic_title |
004 VZ 510 004 VZ Direct Sum Fails for Zero-Error Average Communication Communication complexity Information complexity External information Amortized communication complexity Promise problems |
topic |
ddc 004 ddc 510 misc Communication complexity misc Information complexity misc External information misc Amortized communication complexity misc Promise problems |
topic_unstemmed |
ddc 004 ddc 510 misc Communication complexity misc Information complexity misc External information misc Amortized communication complexity misc Promise problems |
topic_browse |
ddc 004 ddc 510 misc Communication complexity misc Information complexity misc External information misc Amortized communication complexity misc Promise problems |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algorithmica |
hierarchy_parent_id |
129197564 |
dewey-tens |
000 - Computer science, knowledge & systems 510 - Mathematics |
hierarchy_top_title |
Algorithmica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 |
title |
Direct Sum Fails for Zero-Error Average Communication |
ctrlnum |
(DE-627)OLC2054849790 (DE-He213)s00453-016-0144-9-p |
title_full |
Direct Sum Fails for Zero-Error Average Communication |
author_sort |
Kol, Gillat |
journal |
Algorithmica |
journalStr |
Algorithmica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
782 |
author_browse |
Kol, Gillat Moran, Shay Shpilka, Amir Yehudayoff, Amir |
container_volume |
76 |
class |
004 VZ 510 004 VZ |
format_se |
Aufsätze |
author-letter |
Kol, Gillat |
doi_str_mv |
10.1007/s00453-016-0144-9 |
normlink |
(ORCID)0000-0002-8662-2737 |
normlink_prefix_str_mv |
(orcid)0000-0002-8662-2737 |
dewey-full |
004 510 |
title_sort |
direct sum fails for zero-error average communication |
title_auth |
Direct Sum Fails for Zero-Error Average Communication |
abstract |
Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication complexity equals external information complexity. In our examples the underlying distributions do not have full support. One interpretation of a distribution of non full support is as a promise given to the players (the players have a guarantee on their inputs). This brings up the issue of promise versus non-promise problems in this context. © Springer Science+Business Media New York 2016 |
abstractGer |
Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication complexity equals external information complexity. In our examples the underlying distributions do not have full support. One interpretation of a distribution of non full support is as a promise given to the players (the players have a guarantee on their inputs). This brings up the issue of promise versus non-promise problems in this context. © Springer Science+Business Media New York 2016 |
abstract_unstemmed |
Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication complexity equals external information complexity. In our examples the underlying distributions do not have full support. One interpretation of a distribution of non full support is as a promise given to the players (the players have a guarantee on their inputs). This brings up the issue of promise versus non-promise problems in this context. © Springer Science+Business Media New York 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 |
container_issue |
3 |
title_short |
Direct Sum Fails for Zero-Error Average Communication |
url |
https://doi.org/10.1007/s00453-016-0144-9 |
remote_bool |
false |
author2 |
Moran, Shay Shpilka, Amir Yehudayoff, Amir |
author2Str |
Moran, Shay Shpilka, Amir Yehudayoff, Amir |
ppnlink |
129197564 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00453-016-0144-9 |
up_date |
2024-07-04T00:36:19.636Z |
_version_ |
1803606692614635520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054849790</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403074154.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-016-0144-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054849790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-016-0144-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kol, Gillat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Direct Sum Fails for Zero-Error Average Communication</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We show that in the model of zero-error communication complexity, direct sum fails for average communication complexity as well as for external information complexity. Our example also refutes a version of a conjecture by Braverman et al. that in the zero-error case amortized communication complexity equals external information complexity. In our examples the underlying distributions do not have full support. One interpretation of a distribution of non full support is as a promise given to the players (the players have a guarantee on their inputs). This brings up the issue of promise versus non-promise problems in this context.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communication complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">External information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amortized communication complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Promise problems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moran, Shay</subfield><subfield code="0">(orcid)0000-0002-8662-2737</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shpilka, Amir</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yehudayoff, Amir</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer US, 1986</subfield><subfield code="g">76(2016), 3 vom: 28. März, Seite 782-795</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:28</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:782-795</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-016-0144-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">28</subfield><subfield code="c">03</subfield><subfield code="h">782-795</subfield></datafield></record></collection>
|
score |
7.402276 |