Online Square-into-Square Packing
Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the...
Ausführliche Beschreibung
Autor*in: |
Fekete, Sándor P. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Algorithmica - Springer US, 1986, 77(2016), 3 vom: 11. Jan., Seite 867-901 |
---|---|
Übergeordnetes Werk: |
volume:77 ; year:2016 ; number:3 ; day:11 ; month:01 ; pages:867-901 |
Links: |
---|
DOI / URN: |
10.1007/s00453-016-0114-2 |
---|
Katalog-ID: |
OLC2054850365 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054850365 | ||
003 | DE-627 | ||
005 | 20230403074201.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00453-016-0114-2 |2 doi | |
035 | |a (DE-627)OLC2054850365 | ||
035 | |a (DE-He213)s00453-016-0114-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 510 |a 004 |q VZ |
100 | 1 | |a Fekete, Sándor P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Online Square-into-Square Packing |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2016 | ||
520 | |a Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (Theory Comput Syst 43(1):38–55, 2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself. We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a $$2.82{\ldots }$$-competitive method for minimizing the required container size, and a lower bound of $$1.33{\ldots }$$ for the achievable factor. | ||
650 | 4 | |a Packing | |
650 | 4 | |a Online problems | |
650 | 4 | |a Packing squares | |
650 | 4 | |a Critical density | |
700 | 1 | |a Hoffmann, Hella-Franziska |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Algorithmica |d Springer US, 1986 |g 77(2016), 3 vom: 11. Jan., Seite 867-901 |w (DE-627)129197564 |w (DE-600)53958-2 |w (DE-576)014456958 |x 0178-4617 |7 nnns |
773 | 1 | 8 | |g volume:77 |g year:2016 |g number:3 |g day:11 |g month:01 |g pages:867-901 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00453-016-0114-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 77 |j 2016 |e 3 |b 11 |c 01 |h 867-901 |
author_variant |
s p f sp spf h f h hfh |
---|---|
matchkey_str |
article:01784617:2016----::nieqaenoqa |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00453-016-0114-2 doi (DE-627)OLC2054850365 (DE-He213)s00453-016-0114-2-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Fekete, Sándor P. verfasserin aut Online Square-into-Square Packing 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (Theory Comput Syst 43(1):38–55, 2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself. We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a $$2.82{\ldots }$$-competitive method for minimizing the required container size, and a lower bound of $$1.33{\ldots }$$ for the achievable factor. Packing Online problems Packing squares Critical density Hoffmann, Hella-Franziska aut Enthalten in Algorithmica Springer US, 1986 77(2016), 3 vom: 11. Jan., Seite 867-901 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:77 year:2016 number:3 day:11 month:01 pages:867-901 https://doi.org/10.1007/s00453-016-0114-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 77 2016 3 11 01 867-901 |
spelling |
10.1007/s00453-016-0114-2 doi (DE-627)OLC2054850365 (DE-He213)s00453-016-0114-2-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Fekete, Sándor P. verfasserin aut Online Square-into-Square Packing 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (Theory Comput Syst 43(1):38–55, 2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself. We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a $$2.82{\ldots }$$-competitive method for minimizing the required container size, and a lower bound of $$1.33{\ldots }$$ for the achievable factor. Packing Online problems Packing squares Critical density Hoffmann, Hella-Franziska aut Enthalten in Algorithmica Springer US, 1986 77(2016), 3 vom: 11. Jan., Seite 867-901 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:77 year:2016 number:3 day:11 month:01 pages:867-901 https://doi.org/10.1007/s00453-016-0114-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 77 2016 3 11 01 867-901 |
allfields_unstemmed |
10.1007/s00453-016-0114-2 doi (DE-627)OLC2054850365 (DE-He213)s00453-016-0114-2-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Fekete, Sándor P. verfasserin aut Online Square-into-Square Packing 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (Theory Comput Syst 43(1):38–55, 2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself. We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a $$2.82{\ldots }$$-competitive method for minimizing the required container size, and a lower bound of $$1.33{\ldots }$$ for the achievable factor. Packing Online problems Packing squares Critical density Hoffmann, Hella-Franziska aut Enthalten in Algorithmica Springer US, 1986 77(2016), 3 vom: 11. Jan., Seite 867-901 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:77 year:2016 number:3 day:11 month:01 pages:867-901 https://doi.org/10.1007/s00453-016-0114-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 77 2016 3 11 01 867-901 |
allfieldsGer |
10.1007/s00453-016-0114-2 doi (DE-627)OLC2054850365 (DE-He213)s00453-016-0114-2-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Fekete, Sándor P. verfasserin aut Online Square-into-Square Packing 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (Theory Comput Syst 43(1):38–55, 2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself. We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a $$2.82{\ldots }$$-competitive method for minimizing the required container size, and a lower bound of $$1.33{\ldots }$$ for the achievable factor. Packing Online problems Packing squares Critical density Hoffmann, Hella-Franziska aut Enthalten in Algorithmica Springer US, 1986 77(2016), 3 vom: 11. Jan., Seite 867-901 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:77 year:2016 number:3 day:11 month:01 pages:867-901 https://doi.org/10.1007/s00453-016-0114-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 77 2016 3 11 01 867-901 |
allfieldsSound |
10.1007/s00453-016-0114-2 doi (DE-627)OLC2054850365 (DE-He213)s00453-016-0114-2-p DE-627 ger DE-627 rakwb eng 004 VZ 510 004 VZ Fekete, Sándor P. verfasserin aut Online Square-into-Square Packing 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (Theory Comput Syst 43(1):38–55, 2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself. We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a $$2.82{\ldots }$$-competitive method for minimizing the required container size, and a lower bound of $$1.33{\ldots }$$ for the achievable factor. Packing Online problems Packing squares Critical density Hoffmann, Hella-Franziska aut Enthalten in Algorithmica Springer US, 1986 77(2016), 3 vom: 11. Jan., Seite 867-901 (DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 0178-4617 nnns volume:77 year:2016 number:3 day:11 month:01 pages:867-901 https://doi.org/10.1007/s00453-016-0114-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 AR 77 2016 3 11 01 867-901 |
language |
English |
source |
Enthalten in Algorithmica 77(2016), 3 vom: 11. Jan., Seite 867-901 volume:77 year:2016 number:3 day:11 month:01 pages:867-901 |
sourceStr |
Enthalten in Algorithmica 77(2016), 3 vom: 11. Jan., Seite 867-901 volume:77 year:2016 number:3 day:11 month:01 pages:867-901 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Packing Online problems Packing squares Critical density |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Algorithmica |
authorswithroles_txt_mv |
Fekete, Sándor P. @@aut@@ Hoffmann, Hella-Franziska @@aut@@ |
publishDateDaySort_date |
2016-01-11T00:00:00Z |
hierarchy_top_id |
129197564 |
dewey-sort |
14 |
id |
OLC2054850365 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054850365</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403074201.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-016-0114-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054850365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-016-0114-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fekete, Sándor P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Online Square-into-Square Packing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (Theory Comput Syst 43(1):38–55, 2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself. We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a $$2.82{\ldots }$$-competitive method for minimizing the required container size, and a lower bound of $$1.33{\ldots }$$ for the achievable factor.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Packing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Packing squares</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical density</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoffmann, Hella-Franziska</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer US, 1986</subfield><subfield code="g">77(2016), 3 vom: 11. Jan., Seite 867-901</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:11</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:867-901</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-016-0114-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">11</subfield><subfield code="c">01</subfield><subfield code="h">867-901</subfield></datafield></record></collection>
|
author |
Fekete, Sándor P. |
spellingShingle |
Fekete, Sándor P. ddc 004 ddc 510 misc Packing misc Online problems misc Packing squares misc Critical density Online Square-into-Square Packing |
authorStr |
Fekete, Sándor P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129197564 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0178-4617 |
topic_title |
004 VZ 510 004 VZ Online Square-into-Square Packing Packing Online problems Packing squares Critical density |
topic |
ddc 004 ddc 510 misc Packing misc Online problems misc Packing squares misc Critical density |
topic_unstemmed |
ddc 004 ddc 510 misc Packing misc Online problems misc Packing squares misc Critical density |
topic_browse |
ddc 004 ddc 510 misc Packing misc Online problems misc Packing squares misc Critical density |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algorithmica |
hierarchy_parent_id |
129197564 |
dewey-tens |
000 - Computer science, knowledge & systems 510 - Mathematics |
hierarchy_top_title |
Algorithmica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129197564 (DE-600)53958-2 (DE-576)014456958 |
title |
Online Square-into-Square Packing |
ctrlnum |
(DE-627)OLC2054850365 (DE-He213)s00453-016-0114-2-p |
title_full |
Online Square-into-Square Packing |
author_sort |
Fekete, Sándor P. |
journal |
Algorithmica |
journalStr |
Algorithmica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
867 |
author_browse |
Fekete, Sándor P. Hoffmann, Hella-Franziska |
container_volume |
77 |
class |
004 VZ 510 004 VZ |
format_se |
Aufsätze |
author-letter |
Fekete, Sándor P. |
doi_str_mv |
10.1007/s00453-016-0114-2 |
dewey-full |
004 510 |
title_sort |
online square-into-square packing |
title_auth |
Online Square-into-Square Packing |
abstract |
Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (Theory Comput Syst 43(1):38–55, 2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself. We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a $$2.82{\ldots }$$-competitive method for minimizing the required container size, and a lower bound of $$1.33{\ldots }$$ for the achievable factor. © Springer Science+Business Media New York 2016 |
abstractGer |
Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (Theory Comput Syst 43(1):38–55, 2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself. We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a $$2.82{\ldots }$$-competitive method for minimizing the required container size, and a lower bound of $$1.33{\ldots }$$ for the achievable factor. © Springer Science+Business Media New York 2016 |
abstract_unstemmed |
Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (Theory Comput Syst 43(1):38–55, 2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself. We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a $$2.82{\ldots }$$-competitive method for minimizing the required container size, and a lower bound of $$1.33{\ldots }$$ for the achievable factor. © Springer Science+Business Media New York 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4266 GBV_ILN_4318 GBV_ILN_4319 |
container_issue |
3 |
title_short |
Online Square-into-Square Packing |
url |
https://doi.org/10.1007/s00453-016-0114-2 |
remote_bool |
false |
author2 |
Hoffmann, Hella-Franziska |
author2Str |
Hoffmann, Hella-Franziska |
ppnlink |
129197564 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00453-016-0114-2 |
up_date |
2024-07-04T00:36:26.078Z |
_version_ |
1803606699361173504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054850365</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403074201.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00453-016-0114-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054850365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00453-016-0114-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fekete, Sándor P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Online Square-into-Square Packing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (Theory Comput Syst 43(1):38–55, 2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself. We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a $$2.82{\ldots }$$-competitive method for minimizing the required container size, and a lower bound of $$1.33{\ldots }$$ for the achievable factor.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Packing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Packing squares</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical density</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoffmann, Hella-Franziska</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algorithmica</subfield><subfield code="d">Springer US, 1986</subfield><subfield code="g">77(2016), 3 vom: 11. Jan., Seite 867-901</subfield><subfield code="w">(DE-627)129197564</subfield><subfield code="w">(DE-600)53958-2</subfield><subfield code="w">(DE-576)014456958</subfield><subfield code="x">0178-4617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:11</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:867-901</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00453-016-0114-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">11</subfield><subfield code="c">01</subfield><subfield code="h">867-901</subfield></datafield></record></collection>
|
score |
7.4000053 |