The role of continuity in residual-based variational multiscale modeling of turbulence
Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4...
Ausführliche Beschreibung
Autor*in: |
Akkerman, I. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Verlag 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Computational mechanics - Springer-Verlag, 1986, 41(2007), 3 vom: 19. Juni, Seite 371-378 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2007 ; number:3 ; day:19 ; month:06 ; pages:371-378 |
Links: |
---|
DOI / URN: |
10.1007/s00466-007-0193-7 |
---|
Katalog-ID: |
OLC2054917796 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054917796 | ||
003 | DE-627 | ||
005 | 20230502104322.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00466-007-0193-7 |2 doi | |
035 | |a (DE-627)OLC2054917796 | ||
035 | |a (DE-He213)s00466-007-0193-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Akkerman, I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The role of continuity in residual-based variational multiscale modeling of turbulence |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Verlag 2007 | ||
520 | |a Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows. | ||
650 | 4 | |a Incompressible flows | |
650 | 4 | |a Finite elements | |
650 | 4 | |a NURBS | |
650 | 4 | |a Navier–Stokes equations | |
650 | 4 | |a Boundary layers | |
650 | 4 | |a Turbulent channel flows | |
650 | 4 | |a Residual-based turbulence modeling | |
650 | 4 | |a Isogeometric Analysis | |
650 | 4 | |a Continuity of discretization | |
650 | 4 | |a Variational multiscale formulation | |
700 | 1 | |a Bazilevs, Y. |4 aut | |
700 | 1 | |a Calo, V. M. |4 aut | |
700 | 1 | |a Hughes, T. J. R. |4 aut | |
700 | 1 | |a Hulshoff, S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computational mechanics |d Springer-Verlag, 1986 |g 41(2007), 3 vom: 19. Juni, Seite 371-378 |w (DE-627)130635170 |w (DE-600)799787-5 |w (DE-576)016140648 |x 0178-7675 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2007 |g number:3 |g day:19 |g month:06 |g pages:371-378 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00466-007-0193-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 41 |j 2007 |e 3 |b 19 |c 06 |h 371-378 |
author_variant |
i a ia y b yb v m c vm vmc t j r h tjr tjrh s h sh |
---|---|
matchkey_str |
article:01787675:2007----::hrlocniutirsdabsdaitoamlicl |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s00466-007-0193-7 doi (DE-627)OLC2054917796 (DE-He213)s00466-007-0193-7-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Akkerman, I. verfasserin aut The role of continuity in residual-based variational multiscale modeling of turbulence 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Verlag 2007 Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows. Incompressible flows Finite elements NURBS Navier–Stokes equations Boundary layers Turbulent channel flows Residual-based turbulence modeling Isogeometric Analysis Continuity of discretization Variational multiscale formulation Bazilevs, Y. aut Calo, V. M. aut Hughes, T. J. R. aut Hulshoff, S. aut Enthalten in Computational mechanics Springer-Verlag, 1986 41(2007), 3 vom: 19. Juni, Seite 371-378 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:41 year:2007 number:3 day:19 month:06 pages:371-378 https://doi.org/10.1007/s00466-007-0193-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4323 AR 41 2007 3 19 06 371-378 |
spelling |
10.1007/s00466-007-0193-7 doi (DE-627)OLC2054917796 (DE-He213)s00466-007-0193-7-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Akkerman, I. verfasserin aut The role of continuity in residual-based variational multiscale modeling of turbulence 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Verlag 2007 Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows. Incompressible flows Finite elements NURBS Navier–Stokes equations Boundary layers Turbulent channel flows Residual-based turbulence modeling Isogeometric Analysis Continuity of discretization Variational multiscale formulation Bazilevs, Y. aut Calo, V. M. aut Hughes, T. J. R. aut Hulshoff, S. aut Enthalten in Computational mechanics Springer-Verlag, 1986 41(2007), 3 vom: 19. Juni, Seite 371-378 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:41 year:2007 number:3 day:19 month:06 pages:371-378 https://doi.org/10.1007/s00466-007-0193-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4323 AR 41 2007 3 19 06 371-378 |
allfields_unstemmed |
10.1007/s00466-007-0193-7 doi (DE-627)OLC2054917796 (DE-He213)s00466-007-0193-7-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Akkerman, I. verfasserin aut The role of continuity in residual-based variational multiscale modeling of turbulence 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Verlag 2007 Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows. Incompressible flows Finite elements NURBS Navier–Stokes equations Boundary layers Turbulent channel flows Residual-based turbulence modeling Isogeometric Analysis Continuity of discretization Variational multiscale formulation Bazilevs, Y. aut Calo, V. M. aut Hughes, T. J. R. aut Hulshoff, S. aut Enthalten in Computational mechanics Springer-Verlag, 1986 41(2007), 3 vom: 19. Juni, Seite 371-378 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:41 year:2007 number:3 day:19 month:06 pages:371-378 https://doi.org/10.1007/s00466-007-0193-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4323 AR 41 2007 3 19 06 371-378 |
allfieldsGer |
10.1007/s00466-007-0193-7 doi (DE-627)OLC2054917796 (DE-He213)s00466-007-0193-7-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Akkerman, I. verfasserin aut The role of continuity in residual-based variational multiscale modeling of turbulence 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Verlag 2007 Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows. Incompressible flows Finite elements NURBS Navier–Stokes equations Boundary layers Turbulent channel flows Residual-based turbulence modeling Isogeometric Analysis Continuity of discretization Variational multiscale formulation Bazilevs, Y. aut Calo, V. M. aut Hughes, T. J. R. aut Hulshoff, S. aut Enthalten in Computational mechanics Springer-Verlag, 1986 41(2007), 3 vom: 19. Juni, Seite 371-378 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:41 year:2007 number:3 day:19 month:06 pages:371-378 https://doi.org/10.1007/s00466-007-0193-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4323 AR 41 2007 3 19 06 371-378 |
allfieldsSound |
10.1007/s00466-007-0193-7 doi (DE-627)OLC2054917796 (DE-He213)s00466-007-0193-7-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Akkerman, I. verfasserin aut The role of continuity in residual-based variational multiscale modeling of turbulence 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Verlag 2007 Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows. Incompressible flows Finite elements NURBS Navier–Stokes equations Boundary layers Turbulent channel flows Residual-based turbulence modeling Isogeometric Analysis Continuity of discretization Variational multiscale formulation Bazilevs, Y. aut Calo, V. M. aut Hughes, T. J. R. aut Hulshoff, S. aut Enthalten in Computational mechanics Springer-Verlag, 1986 41(2007), 3 vom: 19. Juni, Seite 371-378 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:41 year:2007 number:3 day:19 month:06 pages:371-378 https://doi.org/10.1007/s00466-007-0193-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4323 AR 41 2007 3 19 06 371-378 |
language |
English |
source |
Enthalten in Computational mechanics 41(2007), 3 vom: 19. Juni, Seite 371-378 volume:41 year:2007 number:3 day:19 month:06 pages:371-378 |
sourceStr |
Enthalten in Computational mechanics 41(2007), 3 vom: 19. Juni, Seite 371-378 volume:41 year:2007 number:3 day:19 month:06 pages:371-378 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Incompressible flows Finite elements NURBS Navier–Stokes equations Boundary layers Turbulent channel flows Residual-based turbulence modeling Isogeometric Analysis Continuity of discretization Variational multiscale formulation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Computational mechanics |
authorswithroles_txt_mv |
Akkerman, I. @@aut@@ Bazilevs, Y. @@aut@@ Calo, V. M. @@aut@@ Hughes, T. J. R. @@aut@@ Hulshoff, S. @@aut@@ |
publishDateDaySort_date |
2007-06-19T00:00:00Z |
hierarchy_top_id |
130635170 |
dewey-sort |
3530 |
id |
OLC2054917796 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054917796</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502104322.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00466-007-0193-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054917796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00466-007-0193-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Akkerman, I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The role of continuity in residual-based variational multiscale modeling of turbulence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Verlag 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incompressible flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite elements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NURBS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navier–Stokes equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary layers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulent channel flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual-based turbulence modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isogeometric Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuity of discretization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variational multiscale formulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bazilevs, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calo, V. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hughes, T. J. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hulshoff, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational mechanics</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">41(2007), 3 vom: 19. Juni, Seite 371-378</subfield><subfield code="w">(DE-627)130635170</subfield><subfield code="w">(DE-600)799787-5</subfield><subfield code="w">(DE-576)016140648</subfield><subfield code="x">0178-7675</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">day:19</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:371-378</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00466-007-0193-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="b">19</subfield><subfield code="c">06</subfield><subfield code="h">371-378</subfield></datafield></record></collection>
|
author |
Akkerman, I. |
spellingShingle |
Akkerman, I. ddc 530 ssgn 11 misc Incompressible flows misc Finite elements misc NURBS misc Navier–Stokes equations misc Boundary layers misc Turbulent channel flows misc Residual-based turbulence modeling misc Isogeometric Analysis misc Continuity of discretization misc Variational multiscale formulation The role of continuity in residual-based variational multiscale modeling of turbulence |
authorStr |
Akkerman, I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130635170 |
format |
Article |
dewey-ones |
530 - Physics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0178-7675 |
topic_title |
530 004 VZ 11 ssgn The role of continuity in residual-based variational multiscale modeling of turbulence Incompressible flows Finite elements NURBS Navier–Stokes equations Boundary layers Turbulent channel flows Residual-based turbulence modeling Isogeometric Analysis Continuity of discretization Variational multiscale formulation |
topic |
ddc 530 ssgn 11 misc Incompressible flows misc Finite elements misc NURBS misc Navier–Stokes equations misc Boundary layers misc Turbulent channel flows misc Residual-based turbulence modeling misc Isogeometric Analysis misc Continuity of discretization misc Variational multiscale formulation |
topic_unstemmed |
ddc 530 ssgn 11 misc Incompressible flows misc Finite elements misc NURBS misc Navier–Stokes equations misc Boundary layers misc Turbulent channel flows misc Residual-based turbulence modeling misc Isogeometric Analysis misc Continuity of discretization misc Variational multiscale formulation |
topic_browse |
ddc 530 ssgn 11 misc Incompressible flows misc Finite elements misc NURBS misc Navier–Stokes equations misc Boundary layers misc Turbulent channel flows misc Residual-based turbulence modeling misc Isogeometric Analysis misc Continuity of discretization misc Variational multiscale formulation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Computational mechanics |
hierarchy_parent_id |
130635170 |
dewey-tens |
530 - Physics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computational mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 |
title |
The role of continuity in residual-based variational multiscale modeling of turbulence |
ctrlnum |
(DE-627)OLC2054917796 (DE-He213)s00466-007-0193-7-p |
title_full |
The role of continuity in residual-based variational multiscale modeling of turbulence |
author_sort |
Akkerman, I. |
journal |
Computational mechanics |
journalStr |
Computational mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
371 |
author_browse |
Akkerman, I. Bazilevs, Y. Calo, V. M. Hughes, T. J. R. Hulshoff, S. |
container_volume |
41 |
class |
530 004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Akkerman, I. |
doi_str_mv |
10.1007/s00466-007-0193-7 |
dewey-full |
530 004 |
title_sort |
the role of continuity in residual-based variational multiscale modeling of turbulence |
title_auth |
The role of continuity in residual-based variational multiscale modeling of turbulence |
abstract |
Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows. © Springer Verlag 2007 |
abstractGer |
Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows. © Springer Verlag 2007 |
abstract_unstemmed |
Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows. © Springer Verlag 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4323 |
container_issue |
3 |
title_short |
The role of continuity in residual-based variational multiscale modeling of turbulence |
url |
https://doi.org/10.1007/s00466-007-0193-7 |
remote_bool |
false |
author2 |
Bazilevs, Y. Calo, V. M. Hughes, T. J. R. Hulshoff, S. |
author2Str |
Bazilevs, Y. Calo, V. M. Hughes, T. J. R. Hulshoff, S. |
ppnlink |
130635170 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00466-007-0193-7 |
up_date |
2024-07-04T00:47:38.556Z |
_version_ |
1803607404507561984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054917796</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502104322.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00466-007-0193-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054917796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00466-007-0193-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Akkerman, I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The role of continuity in residual-based variational multiscale modeling of turbulence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Verlag 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incompressible flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite elements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NURBS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navier–Stokes equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary layers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulent channel flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual-based turbulence modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isogeometric Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuity of discretization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variational multiscale formulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bazilevs, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calo, V. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hughes, T. J. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hulshoff, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational mechanics</subfield><subfield code="d">Springer-Verlag, 1986</subfield><subfield code="g">41(2007), 3 vom: 19. Juni, Seite 371-378</subfield><subfield code="w">(DE-627)130635170</subfield><subfield code="w">(DE-600)799787-5</subfield><subfield code="w">(DE-576)016140648</subfield><subfield code="x">0178-7675</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">day:19</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:371-378</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00466-007-0193-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="b">19</subfield><subfield code="c">06</subfield><subfield code="h">371-378</subfield></datafield></record></collection>
|
score |
7.401613 |