A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement
Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the object...
Ausführliche Beschreibung
Autor*in: |
Areias, P. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Computational mechanics - Springer Berlin Heidelberg, 1986, 58(2016), 6 vom: 22. Sept., Seite 1003-1018 |
---|---|
Übergeordnetes Werk: |
volume:58 ; year:2016 ; number:6 ; day:22 ; month:09 ; pages:1003-1018 |
Links: |
---|
DOI / URN: |
10.1007/s00466-016-1328-5 |
---|
Katalog-ID: |
OLC2054928526 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054928526 | ||
003 | DE-627 | ||
005 | 20230502104504.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00466-016-1328-5 |2 doi | |
035 | |a (DE-627)OLC2054928526 | ||
035 | |a (DE-He213)s00466-016-1328-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Areias, P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2016 | ||
520 | |a Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved. | ||
650 | 4 | |a Two-stage algorithm | |
650 | 4 | |a Local mesh refinement | |
650 | 4 | |a Smeared model | |
650 | 4 | |a Crack nucleation and propagation | |
650 | 4 | |a Quasi-brittle fracture | |
700 | 1 | |a Rabczuk, T. |4 aut | |
700 | 1 | |a de Sá, J. César |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computational mechanics |d Springer Berlin Heidelberg, 1986 |g 58(2016), 6 vom: 22. Sept., Seite 1003-1018 |w (DE-627)130635170 |w (DE-600)799787-5 |w (DE-576)016140648 |x 0178-7675 |7 nnns |
773 | 1 | 8 | |g volume:58 |g year:2016 |g number:6 |g day:22 |g month:09 |g pages:1003-1018 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00466-016-1328-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 58 |j 2016 |e 6 |b 22 |c 09 |h 1003-1018 |
author_variant |
p a pa t r tr s j c d sjc sjcd |
---|---|
matchkey_str |
article:01787675:2016----::nvlwsaeiceercmtobsdnhsreepisnqain |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00466-016-1328-5 doi (DE-627)OLC2054928526 (DE-He213)s00466-016-1328-5-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Areias, P. verfasserin aut A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved. Two-stage algorithm Local mesh refinement Smeared model Crack nucleation and propagation Quasi-brittle fracture Rabczuk, T. aut de Sá, J. César aut Enthalten in Computational mechanics Springer Berlin Heidelberg, 1986 58(2016), 6 vom: 22. Sept., Seite 1003-1018 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:58 year:2016 number:6 day:22 month:09 pages:1003-1018 https://doi.org/10.1007/s00466-016-1328-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4323 AR 58 2016 6 22 09 1003-1018 |
spelling |
10.1007/s00466-016-1328-5 doi (DE-627)OLC2054928526 (DE-He213)s00466-016-1328-5-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Areias, P. verfasserin aut A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved. Two-stage algorithm Local mesh refinement Smeared model Crack nucleation and propagation Quasi-brittle fracture Rabczuk, T. aut de Sá, J. César aut Enthalten in Computational mechanics Springer Berlin Heidelberg, 1986 58(2016), 6 vom: 22. Sept., Seite 1003-1018 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:58 year:2016 number:6 day:22 month:09 pages:1003-1018 https://doi.org/10.1007/s00466-016-1328-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4323 AR 58 2016 6 22 09 1003-1018 |
allfields_unstemmed |
10.1007/s00466-016-1328-5 doi (DE-627)OLC2054928526 (DE-He213)s00466-016-1328-5-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Areias, P. verfasserin aut A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved. Two-stage algorithm Local mesh refinement Smeared model Crack nucleation and propagation Quasi-brittle fracture Rabczuk, T. aut de Sá, J. César aut Enthalten in Computational mechanics Springer Berlin Heidelberg, 1986 58(2016), 6 vom: 22. Sept., Seite 1003-1018 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:58 year:2016 number:6 day:22 month:09 pages:1003-1018 https://doi.org/10.1007/s00466-016-1328-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4323 AR 58 2016 6 22 09 1003-1018 |
allfieldsGer |
10.1007/s00466-016-1328-5 doi (DE-627)OLC2054928526 (DE-He213)s00466-016-1328-5-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Areias, P. verfasserin aut A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved. Two-stage algorithm Local mesh refinement Smeared model Crack nucleation and propagation Quasi-brittle fracture Rabczuk, T. aut de Sá, J. César aut Enthalten in Computational mechanics Springer Berlin Heidelberg, 1986 58(2016), 6 vom: 22. Sept., Seite 1003-1018 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:58 year:2016 number:6 day:22 month:09 pages:1003-1018 https://doi.org/10.1007/s00466-016-1328-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4323 AR 58 2016 6 22 09 1003-1018 |
allfieldsSound |
10.1007/s00466-016-1328-5 doi (DE-627)OLC2054928526 (DE-He213)s00466-016-1328-5-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Areias, P. verfasserin aut A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved. Two-stage algorithm Local mesh refinement Smeared model Crack nucleation and propagation Quasi-brittle fracture Rabczuk, T. aut de Sá, J. César aut Enthalten in Computational mechanics Springer Berlin Heidelberg, 1986 58(2016), 6 vom: 22. Sept., Seite 1003-1018 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:58 year:2016 number:6 day:22 month:09 pages:1003-1018 https://doi.org/10.1007/s00466-016-1328-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4323 AR 58 2016 6 22 09 1003-1018 |
language |
English |
source |
Enthalten in Computational mechanics 58(2016), 6 vom: 22. Sept., Seite 1003-1018 volume:58 year:2016 number:6 day:22 month:09 pages:1003-1018 |
sourceStr |
Enthalten in Computational mechanics 58(2016), 6 vom: 22. Sept., Seite 1003-1018 volume:58 year:2016 number:6 day:22 month:09 pages:1003-1018 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Two-stage algorithm Local mesh refinement Smeared model Crack nucleation and propagation Quasi-brittle fracture |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Computational mechanics |
authorswithroles_txt_mv |
Areias, P. @@aut@@ Rabczuk, T. @@aut@@ de Sá, J. César @@aut@@ |
publishDateDaySort_date |
2016-09-22T00:00:00Z |
hierarchy_top_id |
130635170 |
dewey-sort |
3530 |
id |
OLC2054928526 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054928526</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502104504.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00466-016-1328-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054928526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00466-016-1328-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Areias, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Two-stage algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local mesh refinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smeared model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack nucleation and propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasi-brittle fracture</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rabczuk, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Sá, J. César</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational mechanics</subfield><subfield code="d">Springer Berlin Heidelberg, 1986</subfield><subfield code="g">58(2016), 6 vom: 22. Sept., Seite 1003-1018</subfield><subfield code="w">(DE-627)130635170</subfield><subfield code="w">(DE-600)799787-5</subfield><subfield code="w">(DE-576)016140648</subfield><subfield code="x">0178-7675</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1003-1018</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00466-016-1328-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield><subfield code="h">1003-1018</subfield></datafield></record></collection>
|
author |
Areias, P. |
spellingShingle |
Areias, P. ddc 530 ssgn 11 misc Two-stage algorithm misc Local mesh refinement misc Smeared model misc Crack nucleation and propagation misc Quasi-brittle fracture A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement |
authorStr |
Areias, P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130635170 |
format |
Article |
dewey-ones |
530 - Physics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0178-7675 |
topic_title |
530 004 VZ 11 ssgn A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement Two-stage algorithm Local mesh refinement Smeared model Crack nucleation and propagation Quasi-brittle fracture |
topic |
ddc 530 ssgn 11 misc Two-stage algorithm misc Local mesh refinement misc Smeared model misc Crack nucleation and propagation misc Quasi-brittle fracture |
topic_unstemmed |
ddc 530 ssgn 11 misc Two-stage algorithm misc Local mesh refinement misc Smeared model misc Crack nucleation and propagation misc Quasi-brittle fracture |
topic_browse |
ddc 530 ssgn 11 misc Two-stage algorithm misc Local mesh refinement misc Smeared model misc Crack nucleation and propagation misc Quasi-brittle fracture |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Computational mechanics |
hierarchy_parent_id |
130635170 |
dewey-tens |
530 - Physics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computational mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 |
title |
A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement |
ctrlnum |
(DE-627)OLC2054928526 (DE-He213)s00466-016-1328-5-p |
title_full |
A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement |
author_sort |
Areias, P. |
journal |
Computational mechanics |
journalStr |
Computational mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1003 |
author_browse |
Areias, P. Rabczuk, T. de Sá, J. César |
container_volume |
58 |
class |
530 004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Areias, P. |
doi_str_mv |
10.1007/s00466-016-1328-5 |
dewey-full |
530 004 |
title_sort |
a novel two-stage discrete crack method based on the screened poisson equation and local mesh refinement |
title_auth |
A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement |
abstract |
Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved. © Springer-Verlag Berlin Heidelberg 2016 |
abstractGer |
Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved. © Springer-Verlag Berlin Heidelberg 2016 |
abstract_unstemmed |
Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved. © Springer-Verlag Berlin Heidelberg 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4323 |
container_issue |
6 |
title_short |
A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement |
url |
https://doi.org/10.1007/s00466-016-1328-5 |
remote_bool |
false |
author2 |
Rabczuk, T. de Sá, J. César |
author2Str |
Rabczuk, T. de Sá, J. César |
ppnlink |
130635170 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00466-016-1328-5 |
up_date |
2024-07-04T00:49:52.085Z |
_version_ |
1803607544521818112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054928526</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502104504.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00466-016-1328-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054928526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00466-016-1328-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Areias, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Two-stage algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local mesh refinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smeared model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack nucleation and propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasi-brittle fracture</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rabczuk, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Sá, J. César</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational mechanics</subfield><subfield code="d">Springer Berlin Heidelberg, 1986</subfield><subfield code="g">58(2016), 6 vom: 22. Sept., Seite 1003-1018</subfield><subfield code="w">(DE-627)130635170</subfield><subfield code="w">(DE-600)799787-5</subfield><subfield code="w">(DE-576)016140648</subfield><subfield code="x">0178-7675</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1003-1018</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00466-016-1328-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield><subfield code="h">1003-1018</subfield></datafield></record></collection>
|
score |
7.401231 |