Non-linear and hysteretical finite element formulation applied to magnetostrictive materials
Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making...
Ausführliche Beschreibung
Autor*in: |
Palma, Roberto [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Computational mechanics - Springer Berlin Heidelberg, 1986, 65(2020), 6 vom: 02. März, Seite 1433-1445 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2020 ; number:6 ; day:02 ; month:03 ; pages:1433-1445 |
Links: |
---|
DOI / URN: |
10.1007/s00466-020-01828-y |
---|
Katalog-ID: |
OLC205493352X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205493352X | ||
003 | DE-627 | ||
005 | 20230504135624.0 | ||
007 | tu | ||
008 | 200819s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00466-020-01828-y |2 doi | |
035 | |a (DE-627)OLC205493352X | ||
035 | |a (DE-He213)s00466-020-01828-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Palma, Roberto |e verfasserin |4 aut | |
245 | 1 | 0 | |a Non-linear and hysteretical finite element formulation applied to magnetostrictive materials |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2020 | ||
520 | |a Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-$$\beta $$ (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation. | ||
650 | 4 | |a Finite element method | |
650 | 4 | |a Magnetostrictive | |
650 | 4 | |a Maxwell stress tensor | |
650 | 4 | |a Magnetic Debye memory | |
650 | 4 | |a Convolution integrals | |
650 | 4 | |a Hysteresis | |
700 | 1 | |a Pérez-Aparicio, José L. |4 aut | |
700 | 1 | |a Taylor, Robert L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computational mechanics |d Springer Berlin Heidelberg, 1986 |g 65(2020), 6 vom: 02. März, Seite 1433-1445 |w (DE-627)130635170 |w (DE-600)799787-5 |w (DE-576)016140648 |x 0178-7675 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2020 |g number:6 |g day:02 |g month:03 |g pages:1433-1445 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00466-020-01828-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 65 |j 2020 |e 6 |b 02 |c 03 |h 1433-1445 |
author_variant |
r p rp j l p a jlp jlpa r l t rl rlt |
---|---|
matchkey_str |
article:01787675:2020----::olnaadytrtcliielmnfruainpletmg |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s00466-020-01828-y doi (DE-627)OLC205493352X (DE-He213)s00466-020-01828-y-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Palma, Roberto verfasserin aut Non-linear and hysteretical finite element formulation applied to magnetostrictive materials 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-$$\beta $$ (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation. Finite element method Magnetostrictive Maxwell stress tensor Magnetic Debye memory Convolution integrals Hysteresis Pérez-Aparicio, José L. aut Taylor, Robert L. aut Enthalten in Computational mechanics Springer Berlin Heidelberg, 1986 65(2020), 6 vom: 02. März, Seite 1433-1445 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:65 year:2020 number:6 day:02 month:03 pages:1433-1445 https://doi.org/10.1007/s00466-020-01828-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 65 2020 6 02 03 1433-1445 |
spelling |
10.1007/s00466-020-01828-y doi (DE-627)OLC205493352X (DE-He213)s00466-020-01828-y-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Palma, Roberto verfasserin aut Non-linear and hysteretical finite element formulation applied to magnetostrictive materials 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-$$\beta $$ (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation. Finite element method Magnetostrictive Maxwell stress tensor Magnetic Debye memory Convolution integrals Hysteresis Pérez-Aparicio, José L. aut Taylor, Robert L. aut Enthalten in Computational mechanics Springer Berlin Heidelberg, 1986 65(2020), 6 vom: 02. März, Seite 1433-1445 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:65 year:2020 number:6 day:02 month:03 pages:1433-1445 https://doi.org/10.1007/s00466-020-01828-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 65 2020 6 02 03 1433-1445 |
allfields_unstemmed |
10.1007/s00466-020-01828-y doi (DE-627)OLC205493352X (DE-He213)s00466-020-01828-y-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Palma, Roberto verfasserin aut Non-linear and hysteretical finite element formulation applied to magnetostrictive materials 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-$$\beta $$ (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation. Finite element method Magnetostrictive Maxwell stress tensor Magnetic Debye memory Convolution integrals Hysteresis Pérez-Aparicio, José L. aut Taylor, Robert L. aut Enthalten in Computational mechanics Springer Berlin Heidelberg, 1986 65(2020), 6 vom: 02. März, Seite 1433-1445 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:65 year:2020 number:6 day:02 month:03 pages:1433-1445 https://doi.org/10.1007/s00466-020-01828-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 65 2020 6 02 03 1433-1445 |
allfieldsGer |
10.1007/s00466-020-01828-y doi (DE-627)OLC205493352X (DE-He213)s00466-020-01828-y-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Palma, Roberto verfasserin aut Non-linear and hysteretical finite element formulation applied to magnetostrictive materials 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-$$\beta $$ (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation. Finite element method Magnetostrictive Maxwell stress tensor Magnetic Debye memory Convolution integrals Hysteresis Pérez-Aparicio, José L. aut Taylor, Robert L. aut Enthalten in Computational mechanics Springer Berlin Heidelberg, 1986 65(2020), 6 vom: 02. März, Seite 1433-1445 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:65 year:2020 number:6 day:02 month:03 pages:1433-1445 https://doi.org/10.1007/s00466-020-01828-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 65 2020 6 02 03 1433-1445 |
allfieldsSound |
10.1007/s00466-020-01828-y doi (DE-627)OLC205493352X (DE-He213)s00466-020-01828-y-p DE-627 ger DE-627 rakwb eng 530 004 VZ 11 ssgn Palma, Roberto verfasserin aut Non-linear and hysteretical finite element formulation applied to magnetostrictive materials 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-$$\beta $$ (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation. Finite element method Magnetostrictive Maxwell stress tensor Magnetic Debye memory Convolution integrals Hysteresis Pérez-Aparicio, José L. aut Taylor, Robert L. aut Enthalten in Computational mechanics Springer Berlin Heidelberg, 1986 65(2020), 6 vom: 02. März, Seite 1433-1445 (DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 0178-7675 nnns volume:65 year:2020 number:6 day:02 month:03 pages:1433-1445 https://doi.org/10.1007/s00466-020-01828-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 65 2020 6 02 03 1433-1445 |
language |
English |
source |
Enthalten in Computational mechanics 65(2020), 6 vom: 02. März, Seite 1433-1445 volume:65 year:2020 number:6 day:02 month:03 pages:1433-1445 |
sourceStr |
Enthalten in Computational mechanics 65(2020), 6 vom: 02. März, Seite 1433-1445 volume:65 year:2020 number:6 day:02 month:03 pages:1433-1445 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Finite element method Magnetostrictive Maxwell stress tensor Magnetic Debye memory Convolution integrals Hysteresis |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Computational mechanics |
authorswithroles_txt_mv |
Palma, Roberto @@aut@@ Pérez-Aparicio, José L. @@aut@@ Taylor, Robert L. @@aut@@ |
publishDateDaySort_date |
2020-03-02T00:00:00Z |
hierarchy_top_id |
130635170 |
dewey-sort |
3530 |
id |
OLC205493352X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205493352X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504135624.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00466-020-01828-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205493352X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00466-020-01828-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Palma, Roberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-linear and hysteretical finite element formulation applied to magnetostrictive materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-$$\beta $$ (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetostrictive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell stress tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic Debye memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolution integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hysteresis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pérez-Aparicio, José L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, Robert L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational mechanics</subfield><subfield code="d">Springer Berlin Heidelberg, 1986</subfield><subfield code="g">65(2020), 6 vom: 02. März, Seite 1433-1445</subfield><subfield code="w">(DE-627)130635170</subfield><subfield code="w">(DE-600)799787-5</subfield><subfield code="w">(DE-576)016140648</subfield><subfield code="x">0178-7675</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">day:02</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1433-1445</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00466-020-01828-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="b">02</subfield><subfield code="c">03</subfield><subfield code="h">1433-1445</subfield></datafield></record></collection>
|
author |
Palma, Roberto |
spellingShingle |
Palma, Roberto ddc 530 ssgn 11 misc Finite element method misc Magnetostrictive misc Maxwell stress tensor misc Magnetic Debye memory misc Convolution integrals misc Hysteresis Non-linear and hysteretical finite element formulation applied to magnetostrictive materials |
authorStr |
Palma, Roberto |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130635170 |
format |
Article |
dewey-ones |
530 - Physics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0178-7675 |
topic_title |
530 004 VZ 11 ssgn Non-linear and hysteretical finite element formulation applied to magnetostrictive materials Finite element method Magnetostrictive Maxwell stress tensor Magnetic Debye memory Convolution integrals Hysteresis |
topic |
ddc 530 ssgn 11 misc Finite element method misc Magnetostrictive misc Maxwell stress tensor misc Magnetic Debye memory misc Convolution integrals misc Hysteresis |
topic_unstemmed |
ddc 530 ssgn 11 misc Finite element method misc Magnetostrictive misc Maxwell stress tensor misc Magnetic Debye memory misc Convolution integrals misc Hysteresis |
topic_browse |
ddc 530 ssgn 11 misc Finite element method misc Magnetostrictive misc Maxwell stress tensor misc Magnetic Debye memory misc Convolution integrals misc Hysteresis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Computational mechanics |
hierarchy_parent_id |
130635170 |
dewey-tens |
530 - Physics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computational mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130635170 (DE-600)799787-5 (DE-576)016140648 |
title |
Non-linear and hysteretical finite element formulation applied to magnetostrictive materials |
ctrlnum |
(DE-627)OLC205493352X (DE-He213)s00466-020-01828-y-p |
title_full |
Non-linear and hysteretical finite element formulation applied to magnetostrictive materials |
author_sort |
Palma, Roberto |
journal |
Computational mechanics |
journalStr |
Computational mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1433 |
author_browse |
Palma, Roberto Pérez-Aparicio, José L. Taylor, Robert L. |
container_volume |
65 |
class |
530 004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Palma, Roberto |
doi_str_mv |
10.1007/s00466-020-01828-y |
dewey-full |
530 004 |
title_sort |
non-linear and hysteretical finite element formulation applied to magnetostrictive materials |
title_auth |
Non-linear and hysteretical finite element formulation applied to magnetostrictive materials |
abstract |
Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-$$\beta $$ (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstractGer |
Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-$$\beta $$ (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-$$\beta $$ (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
6 |
title_short |
Non-linear and hysteretical finite element formulation applied to magnetostrictive materials |
url |
https://doi.org/10.1007/s00466-020-01828-y |
remote_bool |
false |
author2 |
Pérez-Aparicio, José L. Taylor, Robert L. |
author2Str |
Pérez-Aparicio, José L. Taylor, Robert L. |
ppnlink |
130635170 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00466-020-01828-y |
up_date |
2024-07-04T00:50:55.982Z |
_version_ |
1803607611522678784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205493352X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504135624.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00466-020-01828-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205493352X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00466-020-01828-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Palma, Roberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-linear and hysteretical finite element formulation applied to magnetostrictive materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-$$\beta $$ (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetostrictive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell stress tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic Debye memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolution integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hysteresis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pérez-Aparicio, José L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, Robert L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational mechanics</subfield><subfield code="d">Springer Berlin Heidelberg, 1986</subfield><subfield code="g">65(2020), 6 vom: 02. März, Seite 1433-1445</subfield><subfield code="w">(DE-627)130635170</subfield><subfield code="w">(DE-600)799787-5</subfield><subfield code="w">(DE-576)016140648</subfield><subfield code="x">0178-7675</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">day:02</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1433-1445</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00466-020-01828-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="b">02</subfield><subfield code="c">03</subfield><subfield code="h">1433-1445</subfield></datafield></record></collection>
|
score |
7.4013834 |