The electronic specific heat of a one-dimensional crystal with a sinusoidal potential
Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The...
Ausführliche Beschreibung
Autor*in: |
Lawson, J. O. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1982 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Società Italiana di Fisica 1982 |
---|
Übergeordnetes Werk: |
Enthalten in: Il Nuovo Cimento D - Kluwer Academic Publishers, 1982, 1(1982), 4 vom: Juli, Seite 449-460 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:1982 ; number:4 ; month:07 ; pages:449-460 |
Links: |
---|
DOI / URN: |
10.1007/BF02450531 |
---|
Katalog-ID: |
OLC2055375350 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2055375350 | ||
003 | DE-627 | ||
005 | 20230401104642.0 | ||
007 | tu | ||
008 | 200819s1982 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02450531 |2 doi | |
035 | |a (DE-627)OLC2055375350 | ||
035 | |a (DE-He213)BF02450531-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Lawson, J. O. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The electronic specific heat of a one-dimensional crystal with a sinusoidal potential |
264 | 1 | |c 1982 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Società Italiana di Fisica 1982 | ||
520 | |a Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The Green’s function equation-of-motion technique is utilized to obtain an exact expression for the specific heat forK, the allowed linear momenta, restricted to two Brillouin ones. The specific heat shows metal, semiconductor-to-metal, or insulator-to-metal behavior as a function of temperature, dependent upon the well depth of the sinusoidal potential. | ||
650 | 4 | |a Brillouin Zone | |
650 | 4 | |a Periodic Potential | |
650 | 4 | |a Electron Transport Property | |
650 | 4 | |a Electronic Specific Heat | |
650 | 4 | |a Brillouin Zone Boundary | |
773 | 0 | 8 | |i Enthalten in |t Il Nuovo Cimento D |d Kluwer Academic Publishers, 1982 |g 1(1982), 4 vom: Juli, Seite 449-460 |w (DE-627)130627313 |w (DE-600)797397-4 |w (DE-576)016133544 |x 0392-6737 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:1982 |g number:4 |g month:07 |g pages:449-460 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02450531 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 1 |j 1982 |e 4 |c 07 |h 449-460 |
author_variant |
j o l jo jol |
---|---|
matchkey_str |
article:03926737:1982----::heetoiseiihaoandmninlrsawta |
hierarchy_sort_str |
1982 |
publishDate |
1982 |
allfields |
10.1007/BF02450531 doi (DE-627)OLC2055375350 (DE-He213)BF02450531-p DE-627 ger DE-627 rakwb eng 530 VZ Lawson, J. O. verfasserin aut The electronic specific heat of a one-dimensional crystal with a sinusoidal potential 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Società Italiana di Fisica 1982 Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The Green’s function equation-of-motion technique is utilized to obtain an exact expression for the specific heat forK, the allowed linear momenta, restricted to two Brillouin ones. The specific heat shows metal, semiconductor-to-metal, or insulator-to-metal behavior as a function of temperature, dependent upon the well depth of the sinusoidal potential. Brillouin Zone Periodic Potential Electron Transport Property Electronic Specific Heat Brillouin Zone Boundary Enthalten in Il Nuovo Cimento D Kluwer Academic Publishers, 1982 1(1982), 4 vom: Juli, Seite 449-460 (DE-627)130627313 (DE-600)797397-4 (DE-576)016133544 0392-6737 nnns volume:1 year:1982 number:4 month:07 pages:449-460 https://doi.org/10.1007/BF02450531 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4323 AR 1 1982 4 07 449-460 |
spelling |
10.1007/BF02450531 doi (DE-627)OLC2055375350 (DE-He213)BF02450531-p DE-627 ger DE-627 rakwb eng 530 VZ Lawson, J. O. verfasserin aut The electronic specific heat of a one-dimensional crystal with a sinusoidal potential 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Società Italiana di Fisica 1982 Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The Green’s function equation-of-motion technique is utilized to obtain an exact expression for the specific heat forK, the allowed linear momenta, restricted to two Brillouin ones. The specific heat shows metal, semiconductor-to-metal, or insulator-to-metal behavior as a function of temperature, dependent upon the well depth of the sinusoidal potential. Brillouin Zone Periodic Potential Electron Transport Property Electronic Specific Heat Brillouin Zone Boundary Enthalten in Il Nuovo Cimento D Kluwer Academic Publishers, 1982 1(1982), 4 vom: Juli, Seite 449-460 (DE-627)130627313 (DE-600)797397-4 (DE-576)016133544 0392-6737 nnns volume:1 year:1982 number:4 month:07 pages:449-460 https://doi.org/10.1007/BF02450531 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4323 AR 1 1982 4 07 449-460 |
allfields_unstemmed |
10.1007/BF02450531 doi (DE-627)OLC2055375350 (DE-He213)BF02450531-p DE-627 ger DE-627 rakwb eng 530 VZ Lawson, J. O. verfasserin aut The electronic specific heat of a one-dimensional crystal with a sinusoidal potential 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Società Italiana di Fisica 1982 Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The Green’s function equation-of-motion technique is utilized to obtain an exact expression for the specific heat forK, the allowed linear momenta, restricted to two Brillouin ones. The specific heat shows metal, semiconductor-to-metal, or insulator-to-metal behavior as a function of temperature, dependent upon the well depth of the sinusoidal potential. Brillouin Zone Periodic Potential Electron Transport Property Electronic Specific Heat Brillouin Zone Boundary Enthalten in Il Nuovo Cimento D Kluwer Academic Publishers, 1982 1(1982), 4 vom: Juli, Seite 449-460 (DE-627)130627313 (DE-600)797397-4 (DE-576)016133544 0392-6737 nnns volume:1 year:1982 number:4 month:07 pages:449-460 https://doi.org/10.1007/BF02450531 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4323 AR 1 1982 4 07 449-460 |
allfieldsGer |
10.1007/BF02450531 doi (DE-627)OLC2055375350 (DE-He213)BF02450531-p DE-627 ger DE-627 rakwb eng 530 VZ Lawson, J. O. verfasserin aut The electronic specific heat of a one-dimensional crystal with a sinusoidal potential 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Società Italiana di Fisica 1982 Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The Green’s function equation-of-motion technique is utilized to obtain an exact expression for the specific heat forK, the allowed linear momenta, restricted to two Brillouin ones. The specific heat shows metal, semiconductor-to-metal, or insulator-to-metal behavior as a function of temperature, dependent upon the well depth of the sinusoidal potential. Brillouin Zone Periodic Potential Electron Transport Property Electronic Specific Heat Brillouin Zone Boundary Enthalten in Il Nuovo Cimento D Kluwer Academic Publishers, 1982 1(1982), 4 vom: Juli, Seite 449-460 (DE-627)130627313 (DE-600)797397-4 (DE-576)016133544 0392-6737 nnns volume:1 year:1982 number:4 month:07 pages:449-460 https://doi.org/10.1007/BF02450531 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4323 AR 1 1982 4 07 449-460 |
allfieldsSound |
10.1007/BF02450531 doi (DE-627)OLC2055375350 (DE-He213)BF02450531-p DE-627 ger DE-627 rakwb eng 530 VZ Lawson, J. O. verfasserin aut The electronic specific heat of a one-dimensional crystal with a sinusoidal potential 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Società Italiana di Fisica 1982 Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The Green’s function equation-of-motion technique is utilized to obtain an exact expression for the specific heat forK, the allowed linear momenta, restricted to two Brillouin ones. The specific heat shows metal, semiconductor-to-metal, or insulator-to-metal behavior as a function of temperature, dependent upon the well depth of the sinusoidal potential. Brillouin Zone Periodic Potential Electron Transport Property Electronic Specific Heat Brillouin Zone Boundary Enthalten in Il Nuovo Cimento D Kluwer Academic Publishers, 1982 1(1982), 4 vom: Juli, Seite 449-460 (DE-627)130627313 (DE-600)797397-4 (DE-576)016133544 0392-6737 nnns volume:1 year:1982 number:4 month:07 pages:449-460 https://doi.org/10.1007/BF02450531 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4323 AR 1 1982 4 07 449-460 |
language |
English |
source |
Enthalten in Il Nuovo Cimento D 1(1982), 4 vom: Juli, Seite 449-460 volume:1 year:1982 number:4 month:07 pages:449-460 |
sourceStr |
Enthalten in Il Nuovo Cimento D 1(1982), 4 vom: Juli, Seite 449-460 volume:1 year:1982 number:4 month:07 pages:449-460 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Brillouin Zone Periodic Potential Electron Transport Property Electronic Specific Heat Brillouin Zone Boundary |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Il Nuovo Cimento D |
authorswithroles_txt_mv |
Lawson, J. O. @@aut@@ |
publishDateDaySort_date |
1982-07-01T00:00:00Z |
hierarchy_top_id |
130627313 |
dewey-sort |
3530 |
id |
OLC2055375350 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2055375350</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401104642.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1982 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02450531</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2055375350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02450531-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lawson, J. O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The electronic specific heat of a one-dimensional crystal with a sinusoidal potential</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1982</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Società Italiana di Fisica 1982</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The Green’s function equation-of-motion technique is utilized to obtain an exact expression for the specific heat forK, the allowed linear momenta, restricted to two Brillouin ones. The specific heat shows metal, semiconductor-to-metal, or insulator-to-metal behavior as a function of temperature, dependent upon the well depth of the sinusoidal potential.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brillouin Zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron Transport Property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic Specific Heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brillouin Zone Boundary</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Il Nuovo Cimento D</subfield><subfield code="d">Kluwer Academic Publishers, 1982</subfield><subfield code="g">1(1982), 4 vom: Juli, Seite 449-460</subfield><subfield code="w">(DE-627)130627313</subfield><subfield code="w">(DE-600)797397-4</subfield><subfield code="w">(DE-576)016133544</subfield><subfield code="x">0392-6737</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:1982</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:449-460</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02450531</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">1982</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">449-460</subfield></datafield></record></collection>
|
author |
Lawson, J. O. |
spellingShingle |
Lawson, J. O. ddc 530 misc Brillouin Zone misc Periodic Potential misc Electron Transport Property misc Electronic Specific Heat misc Brillouin Zone Boundary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential |
authorStr |
Lawson, J. O. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130627313 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0392-6737 |
topic_title |
530 VZ The electronic specific heat of a one-dimensional crystal with a sinusoidal potential Brillouin Zone Periodic Potential Electron Transport Property Electronic Specific Heat Brillouin Zone Boundary |
topic |
ddc 530 misc Brillouin Zone misc Periodic Potential misc Electron Transport Property misc Electronic Specific Heat misc Brillouin Zone Boundary |
topic_unstemmed |
ddc 530 misc Brillouin Zone misc Periodic Potential misc Electron Transport Property misc Electronic Specific Heat misc Brillouin Zone Boundary |
topic_browse |
ddc 530 misc Brillouin Zone misc Periodic Potential misc Electron Transport Property misc Electronic Specific Heat misc Brillouin Zone Boundary |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Il Nuovo Cimento D |
hierarchy_parent_id |
130627313 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Il Nuovo Cimento D |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130627313 (DE-600)797397-4 (DE-576)016133544 |
title |
The electronic specific heat of a one-dimensional crystal with a sinusoidal potential |
ctrlnum |
(DE-627)OLC2055375350 (DE-He213)BF02450531-p |
title_full |
The electronic specific heat of a one-dimensional crystal with a sinusoidal potential |
author_sort |
Lawson, J. O. |
journal |
Il Nuovo Cimento D |
journalStr |
Il Nuovo Cimento D |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1982 |
contenttype_str_mv |
txt |
container_start_page |
449 |
author_browse |
Lawson, J. O. |
container_volume |
1 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Lawson, J. O. |
doi_str_mv |
10.1007/BF02450531 |
dewey-full |
530 |
title_sort |
the electronic specific heat of a one-dimensional crystal with a sinusoidal potential |
title_auth |
The electronic specific heat of a one-dimensional crystal with a sinusoidal potential |
abstract |
Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The Green’s function equation-of-motion technique is utilized to obtain an exact expression for the specific heat forK, the allowed linear momenta, restricted to two Brillouin ones. The specific heat shows metal, semiconductor-to-metal, or insulator-to-metal behavior as a function of temperature, dependent upon the well depth of the sinusoidal potential. © Società Italiana di Fisica 1982 |
abstractGer |
Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The Green’s function equation-of-motion technique is utilized to obtain an exact expression for the specific heat forK, the allowed linear momenta, restricted to two Brillouin ones. The specific heat shows metal, semiconductor-to-metal, or insulator-to-metal behavior as a function of temperature, dependent upon the well depth of the sinusoidal potential. © Società Italiana di Fisica 1982 |
abstract_unstemmed |
Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The Green’s function equation-of-motion technique is utilized to obtain an exact expression for the specific heat forK, the allowed linear momenta, restricted to two Brillouin ones. The specific heat shows metal, semiconductor-to-metal, or insulator-to-metal behavior as a function of temperature, dependent upon the well depth of the sinusoidal potential. © Società Italiana di Fisica 1982 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4323 |
container_issue |
4 |
title_short |
The electronic specific heat of a one-dimensional crystal with a sinusoidal potential |
url |
https://doi.org/10.1007/BF02450531 |
remote_bool |
false |
ppnlink |
130627313 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02450531 |
up_date |
2024-07-04T02:03:22.862Z |
_version_ |
1803612169554624512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2055375350</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401104642.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1982 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02450531</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2055375350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02450531-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lawson, J. O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The electronic specific heat of a one-dimensional crystal with a sinusoidal potential</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1982</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Società Italiana di Fisica 1982</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The electronic specific heat of a one-dimensional crystal with a sinusoidal potential is examined in the second quantized formulation. Two electrons per lattice site are assumed to be under the influence of the potential; electron-electron interactions via Coulomb repulsion are ignored. The Green’s function equation-of-motion technique is utilized to obtain an exact expression for the specific heat forK, the allowed linear momenta, restricted to two Brillouin ones. The specific heat shows metal, semiconductor-to-metal, or insulator-to-metal behavior as a function of temperature, dependent upon the well depth of the sinusoidal potential.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brillouin Zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron Transport Property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic Specific Heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brillouin Zone Boundary</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Il Nuovo Cimento D</subfield><subfield code="d">Kluwer Academic Publishers, 1982</subfield><subfield code="g">1(1982), 4 vom: Juli, Seite 449-460</subfield><subfield code="w">(DE-627)130627313</subfield><subfield code="w">(DE-600)797397-4</subfield><subfield code="w">(DE-576)016133544</subfield><subfield code="x">0392-6737</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:1982</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:449-460</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02450531</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">1982</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">449-460</subfield></datafield></record></collection>
|
score |
7.401725 |