Piecewise Hermite interpolation via barycentric coordinates
Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of...
Ausführliche Beschreibung
Autor*in: |
Cuomo, Salvatore [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Università degli Studi di Napoli "Federico II" 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Ricerche di matematica - Springer Milan, 1952, 64(2015), 2 vom: 23. Juni, Seite 303-319 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2015 ; number:2 ; day:23 ; month:06 ; pages:303-319 |
Links: |
---|
DOI / URN: |
10.1007/s11587-015-0233-0 |
---|
Katalog-ID: |
OLC2055582763 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2055582763 | ||
003 | DE-627 | ||
005 | 20230401113437.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11587-015-0233-0 |2 doi | |
035 | |a (DE-627)OLC2055582763 | ||
035 | |a (DE-He213)s11587-015-0233-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Cuomo, Salvatore |e verfasserin |4 aut | |
245 | 1 | 0 | |a Piecewise Hermite interpolation via barycentric coordinates |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Università degli Studi di Napoli "Federico II" 2015 | ||
520 | |a Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of piecewise interpolating functions whose expression depends on the barycentric coordinates, we extend that approach to obtain an interpolant for which Hermite constraints are assigned. The underlying idea is to define the interpolant on each subinterval, by weighting two Taylor polynomials, centered at the endpoints, of a function that generated the Hermite conditions. The weights depend on a suitable function of the barycentric coordinates of the evaluation point. We show that the interpolating function inherits the properties of regularity from such a weight function. Moreover, we study the interpolation error and provide bounds in terms of both the degree of the Taylor polynomials and properties of the weight function. Numerical experiments confirm the theoretical results and show the reliability of the bounds provided for the interpolation error. | ||
650 | 4 | |a Discrete data interpolation | |
650 | 4 | |a Hermite interpolation | |
650 | 4 | |a Piecewise-defined functions | |
650 | 4 | |a Barycentric coordinates | |
700 | 1 | |a Galletti, Ardelio |4 aut | |
700 | 1 | |a Giunta, Giulio |4 aut | |
700 | 1 | |a Marcellino, Livia |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ricerche di matematica |d Springer Milan, 1952 |g 64(2015), 2 vom: 23. Juni, Seite 303-319 |w (DE-627)129853259 |w (DE-600)280837-7 |w (DE-576)015154122 |x 0035-5038 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2015 |g number:2 |g day:23 |g month:06 |g pages:303-319 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11587-015-0233-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_4036 | ||
951 | |a AR | ||
952 | |d 64 |j 2015 |e 2 |b 23 |c 06 |h 303-319 |
author_variant |
s c sc a g ag g g gg l m lm |
---|---|
matchkey_str |
article:00355038:2015----::icwshrienepltovaaye |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11587-015-0233-0 doi (DE-627)OLC2055582763 (DE-He213)s11587-015-0233-0-p DE-627 ger DE-627 rakwb eng 510 VZ Cuomo, Salvatore verfasserin aut Piecewise Hermite interpolation via barycentric coordinates 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Università degli Studi di Napoli "Federico II" 2015 Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of piecewise interpolating functions whose expression depends on the barycentric coordinates, we extend that approach to obtain an interpolant for which Hermite constraints are assigned. The underlying idea is to define the interpolant on each subinterval, by weighting two Taylor polynomials, centered at the endpoints, of a function that generated the Hermite conditions. The weights depend on a suitable function of the barycentric coordinates of the evaluation point. We show that the interpolating function inherits the properties of regularity from such a weight function. Moreover, we study the interpolation error and provide bounds in terms of both the degree of the Taylor polynomials and properties of the weight function. Numerical experiments confirm the theoretical results and show the reliability of the bounds provided for the interpolation error. Discrete data interpolation Hermite interpolation Piecewise-defined functions Barycentric coordinates Galletti, Ardelio aut Giunta, Giulio aut Marcellino, Livia aut Enthalten in Ricerche di matematica Springer Milan, 1952 64(2015), 2 vom: 23. Juni, Seite 303-319 (DE-627)129853259 (DE-600)280837-7 (DE-576)015154122 0035-5038 nnns volume:64 year:2015 number:2 day:23 month:06 pages:303-319 https://doi.org/10.1007/s11587-015-0233-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_62 GBV_ILN_2010 GBV_ILN_4036 AR 64 2015 2 23 06 303-319 |
spelling |
10.1007/s11587-015-0233-0 doi (DE-627)OLC2055582763 (DE-He213)s11587-015-0233-0-p DE-627 ger DE-627 rakwb eng 510 VZ Cuomo, Salvatore verfasserin aut Piecewise Hermite interpolation via barycentric coordinates 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Università degli Studi di Napoli "Federico II" 2015 Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of piecewise interpolating functions whose expression depends on the barycentric coordinates, we extend that approach to obtain an interpolant for which Hermite constraints are assigned. The underlying idea is to define the interpolant on each subinterval, by weighting two Taylor polynomials, centered at the endpoints, of a function that generated the Hermite conditions. The weights depend on a suitable function of the barycentric coordinates of the evaluation point. We show that the interpolating function inherits the properties of regularity from such a weight function. Moreover, we study the interpolation error and provide bounds in terms of both the degree of the Taylor polynomials and properties of the weight function. Numerical experiments confirm the theoretical results and show the reliability of the bounds provided for the interpolation error. Discrete data interpolation Hermite interpolation Piecewise-defined functions Barycentric coordinates Galletti, Ardelio aut Giunta, Giulio aut Marcellino, Livia aut Enthalten in Ricerche di matematica Springer Milan, 1952 64(2015), 2 vom: 23. Juni, Seite 303-319 (DE-627)129853259 (DE-600)280837-7 (DE-576)015154122 0035-5038 nnns volume:64 year:2015 number:2 day:23 month:06 pages:303-319 https://doi.org/10.1007/s11587-015-0233-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_62 GBV_ILN_2010 GBV_ILN_4036 AR 64 2015 2 23 06 303-319 |
allfields_unstemmed |
10.1007/s11587-015-0233-0 doi (DE-627)OLC2055582763 (DE-He213)s11587-015-0233-0-p DE-627 ger DE-627 rakwb eng 510 VZ Cuomo, Salvatore verfasserin aut Piecewise Hermite interpolation via barycentric coordinates 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Università degli Studi di Napoli "Federico II" 2015 Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of piecewise interpolating functions whose expression depends on the barycentric coordinates, we extend that approach to obtain an interpolant for which Hermite constraints are assigned. The underlying idea is to define the interpolant on each subinterval, by weighting two Taylor polynomials, centered at the endpoints, of a function that generated the Hermite conditions. The weights depend on a suitable function of the barycentric coordinates of the evaluation point. We show that the interpolating function inherits the properties of regularity from such a weight function. Moreover, we study the interpolation error and provide bounds in terms of both the degree of the Taylor polynomials and properties of the weight function. Numerical experiments confirm the theoretical results and show the reliability of the bounds provided for the interpolation error. Discrete data interpolation Hermite interpolation Piecewise-defined functions Barycentric coordinates Galletti, Ardelio aut Giunta, Giulio aut Marcellino, Livia aut Enthalten in Ricerche di matematica Springer Milan, 1952 64(2015), 2 vom: 23. Juni, Seite 303-319 (DE-627)129853259 (DE-600)280837-7 (DE-576)015154122 0035-5038 nnns volume:64 year:2015 number:2 day:23 month:06 pages:303-319 https://doi.org/10.1007/s11587-015-0233-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_62 GBV_ILN_2010 GBV_ILN_4036 AR 64 2015 2 23 06 303-319 |
allfieldsGer |
10.1007/s11587-015-0233-0 doi (DE-627)OLC2055582763 (DE-He213)s11587-015-0233-0-p DE-627 ger DE-627 rakwb eng 510 VZ Cuomo, Salvatore verfasserin aut Piecewise Hermite interpolation via barycentric coordinates 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Università degli Studi di Napoli "Federico II" 2015 Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of piecewise interpolating functions whose expression depends on the barycentric coordinates, we extend that approach to obtain an interpolant for which Hermite constraints are assigned. The underlying idea is to define the interpolant on each subinterval, by weighting two Taylor polynomials, centered at the endpoints, of a function that generated the Hermite conditions. The weights depend on a suitable function of the barycentric coordinates of the evaluation point. We show that the interpolating function inherits the properties of regularity from such a weight function. Moreover, we study the interpolation error and provide bounds in terms of both the degree of the Taylor polynomials and properties of the weight function. Numerical experiments confirm the theoretical results and show the reliability of the bounds provided for the interpolation error. Discrete data interpolation Hermite interpolation Piecewise-defined functions Barycentric coordinates Galletti, Ardelio aut Giunta, Giulio aut Marcellino, Livia aut Enthalten in Ricerche di matematica Springer Milan, 1952 64(2015), 2 vom: 23. Juni, Seite 303-319 (DE-627)129853259 (DE-600)280837-7 (DE-576)015154122 0035-5038 nnns volume:64 year:2015 number:2 day:23 month:06 pages:303-319 https://doi.org/10.1007/s11587-015-0233-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_62 GBV_ILN_2010 GBV_ILN_4036 AR 64 2015 2 23 06 303-319 |
allfieldsSound |
10.1007/s11587-015-0233-0 doi (DE-627)OLC2055582763 (DE-He213)s11587-015-0233-0-p DE-627 ger DE-627 rakwb eng 510 VZ Cuomo, Salvatore verfasserin aut Piecewise Hermite interpolation via barycentric coordinates 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Università degli Studi di Napoli "Federico II" 2015 Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of piecewise interpolating functions whose expression depends on the barycentric coordinates, we extend that approach to obtain an interpolant for which Hermite constraints are assigned. The underlying idea is to define the interpolant on each subinterval, by weighting two Taylor polynomials, centered at the endpoints, of a function that generated the Hermite conditions. The weights depend on a suitable function of the barycentric coordinates of the evaluation point. We show that the interpolating function inherits the properties of regularity from such a weight function. Moreover, we study the interpolation error and provide bounds in terms of both the degree of the Taylor polynomials and properties of the weight function. Numerical experiments confirm the theoretical results and show the reliability of the bounds provided for the interpolation error. Discrete data interpolation Hermite interpolation Piecewise-defined functions Barycentric coordinates Galletti, Ardelio aut Giunta, Giulio aut Marcellino, Livia aut Enthalten in Ricerche di matematica Springer Milan, 1952 64(2015), 2 vom: 23. Juni, Seite 303-319 (DE-627)129853259 (DE-600)280837-7 (DE-576)015154122 0035-5038 nnns volume:64 year:2015 number:2 day:23 month:06 pages:303-319 https://doi.org/10.1007/s11587-015-0233-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_62 GBV_ILN_2010 GBV_ILN_4036 AR 64 2015 2 23 06 303-319 |
language |
English |
source |
Enthalten in Ricerche di matematica 64(2015), 2 vom: 23. Juni, Seite 303-319 volume:64 year:2015 number:2 day:23 month:06 pages:303-319 |
sourceStr |
Enthalten in Ricerche di matematica 64(2015), 2 vom: 23. Juni, Seite 303-319 volume:64 year:2015 number:2 day:23 month:06 pages:303-319 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Discrete data interpolation Hermite interpolation Piecewise-defined functions Barycentric coordinates |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Ricerche di matematica |
authorswithroles_txt_mv |
Cuomo, Salvatore @@aut@@ Galletti, Ardelio @@aut@@ Giunta, Giulio @@aut@@ Marcellino, Livia @@aut@@ |
publishDateDaySort_date |
2015-06-23T00:00:00Z |
hierarchy_top_id |
129853259 |
dewey-sort |
3510 |
id |
OLC2055582763 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2055582763</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401113437.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11587-015-0233-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2055582763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11587-015-0233-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cuomo, Salvatore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Piecewise Hermite interpolation via barycentric coordinates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Università degli Studi di Napoli "Federico II" 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of piecewise interpolating functions whose expression depends on the barycentric coordinates, we extend that approach to obtain an interpolant for which Hermite constraints are assigned. The underlying idea is to define the interpolant on each subinterval, by weighting two Taylor polynomials, centered at the endpoints, of a function that generated the Hermite conditions. The weights depend on a suitable function of the barycentric coordinates of the evaluation point. We show that the interpolating function inherits the properties of regularity from such a weight function. Moreover, we study the interpolation error and provide bounds in terms of both the degree of the Taylor polynomials and properties of the weight function. Numerical experiments confirm the theoretical results and show the reliability of the bounds provided for the interpolation error.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete data interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hermite interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piecewise-defined functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barycentric coordinates</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galletti, Ardelio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giunta, Giulio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marcellino, Livia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ricerche di matematica</subfield><subfield code="d">Springer Milan, 1952</subfield><subfield code="g">64(2015), 2 vom: 23. Juni, Seite 303-319</subfield><subfield code="w">(DE-627)129853259</subfield><subfield code="w">(DE-600)280837-7</subfield><subfield code="w">(DE-576)015154122</subfield><subfield code="x">0035-5038</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">day:23</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:303-319</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11587-015-0233-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="b">23</subfield><subfield code="c">06</subfield><subfield code="h">303-319</subfield></datafield></record></collection>
|
author |
Cuomo, Salvatore |
spellingShingle |
Cuomo, Salvatore ddc 510 misc Discrete data interpolation misc Hermite interpolation misc Piecewise-defined functions misc Barycentric coordinates Piecewise Hermite interpolation via barycentric coordinates |
authorStr |
Cuomo, Salvatore |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129853259 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0035-5038 |
topic_title |
510 VZ Piecewise Hermite interpolation via barycentric coordinates Discrete data interpolation Hermite interpolation Piecewise-defined functions Barycentric coordinates |
topic |
ddc 510 misc Discrete data interpolation misc Hermite interpolation misc Piecewise-defined functions misc Barycentric coordinates |
topic_unstemmed |
ddc 510 misc Discrete data interpolation misc Hermite interpolation misc Piecewise-defined functions misc Barycentric coordinates |
topic_browse |
ddc 510 misc Discrete data interpolation misc Hermite interpolation misc Piecewise-defined functions misc Barycentric coordinates |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Ricerche di matematica |
hierarchy_parent_id |
129853259 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Ricerche di matematica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129853259 (DE-600)280837-7 (DE-576)015154122 |
title |
Piecewise Hermite interpolation via barycentric coordinates |
ctrlnum |
(DE-627)OLC2055582763 (DE-He213)s11587-015-0233-0-p |
title_full |
Piecewise Hermite interpolation via barycentric coordinates |
author_sort |
Cuomo, Salvatore |
journal |
Ricerche di matematica |
journalStr |
Ricerche di matematica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
303 |
author_browse |
Cuomo, Salvatore Galletti, Ardelio Giunta, Giulio Marcellino, Livia |
container_volume |
64 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Cuomo, Salvatore |
doi_str_mv |
10.1007/s11587-015-0233-0 |
dewey-full |
510 |
title_sort |
piecewise hermite interpolation via barycentric coordinates |
title_auth |
Piecewise Hermite interpolation via barycentric coordinates |
abstract |
Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of piecewise interpolating functions whose expression depends on the barycentric coordinates, we extend that approach to obtain an interpolant for which Hermite constraints are assigned. The underlying idea is to define the interpolant on each subinterval, by weighting two Taylor polynomials, centered at the endpoints, of a function that generated the Hermite conditions. The weights depend on a suitable function of the barycentric coordinates of the evaluation point. We show that the interpolating function inherits the properties of regularity from such a weight function. Moreover, we study the interpolation error and provide bounds in terms of both the degree of the Taylor polynomials and properties of the weight function. Numerical experiments confirm the theoretical results and show the reliability of the bounds provided for the interpolation error. © Università degli Studi di Napoli "Federico II" 2015 |
abstractGer |
Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of piecewise interpolating functions whose expression depends on the barycentric coordinates, we extend that approach to obtain an interpolant for which Hermite constraints are assigned. The underlying idea is to define the interpolant on each subinterval, by weighting two Taylor polynomials, centered at the endpoints, of a function that generated the Hermite conditions. The weights depend on a suitable function of the barycentric coordinates of the evaluation point. We show that the interpolating function inherits the properties of regularity from such a weight function. Moreover, we study the interpolation error and provide bounds in terms of both the degree of the Taylor polynomials and properties of the weight function. Numerical experiments confirm the theoretical results and show the reliability of the bounds provided for the interpolation error. © Università degli Studi di Napoli "Federico II" 2015 |
abstract_unstemmed |
Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of piecewise interpolating functions whose expression depends on the barycentric coordinates, we extend that approach to obtain an interpolant for which Hermite constraints are assigned. The underlying idea is to define the interpolant on each subinterval, by weighting two Taylor polynomials, centered at the endpoints, of a function that generated the Hermite conditions. The weights depend on a suitable function of the barycentric coordinates of the evaluation point. We show that the interpolating function inherits the properties of regularity from such a weight function. Moreover, we study the interpolation error and provide bounds in terms of both the degree of the Taylor polynomials and properties of the weight function. Numerical experiments confirm the theoretical results and show the reliability of the bounds provided for the interpolation error. © Università degli Studi di Napoli "Federico II" 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_62 GBV_ILN_2010 GBV_ILN_4036 |
container_issue |
2 |
title_short |
Piecewise Hermite interpolation via barycentric coordinates |
url |
https://doi.org/10.1007/s11587-015-0233-0 |
remote_bool |
false |
author2 |
Galletti, Ardelio Giunta, Giulio Marcellino, Livia |
author2Str |
Galletti, Ardelio Giunta, Giulio Marcellino, Livia |
ppnlink |
129853259 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11587-015-0233-0 |
up_date |
2024-07-04T02:33:58.776Z |
_version_ |
1803614094654177280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2055582763</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401113437.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11587-015-0233-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2055582763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11587-015-0233-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cuomo, Salvatore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Piecewise Hermite interpolation via barycentric coordinates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Università degli Studi di Napoli "Federico II" 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolating function by means of polynomial pieces and ensure that some regularity conditions hold at the break-points. In this paper, starting from a previous work, where we proposed a class of piecewise interpolating functions whose expression depends on the barycentric coordinates, we extend that approach to obtain an interpolant for which Hermite constraints are assigned. The underlying idea is to define the interpolant on each subinterval, by weighting two Taylor polynomials, centered at the endpoints, of a function that generated the Hermite conditions. The weights depend on a suitable function of the barycentric coordinates of the evaluation point. We show that the interpolating function inherits the properties of regularity from such a weight function. Moreover, we study the interpolation error and provide bounds in terms of both the degree of the Taylor polynomials and properties of the weight function. Numerical experiments confirm the theoretical results and show the reliability of the bounds provided for the interpolation error.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete data interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hermite interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piecewise-defined functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barycentric coordinates</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galletti, Ardelio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giunta, Giulio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marcellino, Livia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ricerche di matematica</subfield><subfield code="d">Springer Milan, 1952</subfield><subfield code="g">64(2015), 2 vom: 23. Juni, Seite 303-319</subfield><subfield code="w">(DE-627)129853259</subfield><subfield code="w">(DE-600)280837-7</subfield><subfield code="w">(DE-576)015154122</subfield><subfield code="x">0035-5038</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">day:23</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:303-319</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11587-015-0233-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="b">23</subfield><subfield code="c">06</subfield><subfield code="h">303-319</subfield></datafield></record></collection>
|
score |
7.400522 |