Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification
Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depe...
Ausführliche Beschreibung
Autor*in: |
Vinogradov, G. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1972 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Dr. Dietrich Steinkopff Verlag 1972 |
---|
Übergeordnetes Werk: |
Enthalten in: Rheologica acta - Steinkopff-Verlag, 1961, 11(1972), 3-4 vom: Sept., Seite 258-274 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:1972 ; number:3-4 ; month:09 ; pages:258-274 |
Links: |
---|
DOI / URN: |
10.1007/BF01974769 |
---|
Katalog-ID: |
OLC2055982702 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2055982702 | ||
003 | DE-627 | ||
005 | 20230402190929.0 | ||
007 | tu | ||
008 | 200819s1972 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01974769 |2 doi | |
035 | |a (DE-627)OLC2055982702 | ||
035 | |a (DE-He213)BF01974769-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 660 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Vinogradov, G. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification |
264 | 1 | |c 1972 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Dr. Dietrich Steinkopff Verlag 1972 | ||
520 | |a Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depend, in a general case, on temperature, concentration, velocity gradients and the stresses applied. In this sense this theory, like the other theories of the viscoelastic behaviour of a macromolecular system proposed byMarvin andOser, Hayashi, Chompf, andDuiser is of a semi-phenomenological nature. The theory expounded above provides however a more consistent explanation of the viscoelastic behaviour of the polymeric systems under consideration in shear. The description of the most important specific features of the viscoelastic properties of polymeric systems under steady flow and oscillatory (cyclic) deformation is based on unified conceptions. The latter include the ratio of the first normal stress difference to the square of shear stresses; the variation of the viscoelastic functions and relaxation-time spectrum with increasing stresses or deformation amplitudes; the finalizing of the time-temperature superposition of the viscoelastic functions; the prediction of a loss of the fluidity of viscoelastic media with increase of shear stresses and rates, including the main features of this process. It should however be noted that this theory, as it follows from a detailed comparison with experiment, provides a qualitatively approximate description of the viscoelastic properties of monodisperse polymers. For example, the relaxation-time distribution in the region of transition from flow to the high-elasticity plateau appears to be somewhat different than that predicted by the theory. In distinction to what is predicted by the theory, a set of relaxation times in equivalent networks, corresponding to a decrease of molecular weight or to the application of stresses, is not equivalent. This and other shortcomings are an indication of the imperfection of the model which must be improved, probably by introducing intramolecular viscosity or hydrodynamic interaction. | ||
650 | 4 | |a Viscoelastic Property | |
650 | 4 | |a Viscoelastic Behaviour | |
650 | 4 | |a Hydrodynamic Interaction | |
650 | 4 | |a Normal Stress Difference | |
650 | 4 | |a Viscoelastic Medium | |
700 | 1 | |a Pokrovsky, V. H. |4 aut | |
700 | 1 | |a Yanovsky, Yu. G. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Rheologica acta |d Steinkopff-Verlag, 1961 |g 11(1972), 3-4 vom: Sept., Seite 258-274 |w (DE-627)129512052 |w (DE-600)210407-6 |w (DE-576)014919613 |x 0035-4511 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:1972 |g number:3-4 |g month:09 |g pages:258-274 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01974769 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2245 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4028 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 11 |j 1972 |e 3-4 |c 09 |h 258-274 |
author_variant |
g v v gv gvv v h p vh vhp y g y yg ygy |
---|---|
matchkey_str |
article:00354511:1972----::hoyficeatceaiuolnaplmriuioeuaapoiainn |
hierarchy_sort_str |
1972 |
publishDate |
1972 |
allfields |
10.1007/BF01974769 doi (DE-627)OLC2055982702 (DE-He213)BF01974769-p DE-627 ger DE-627 rakwb eng 540 660 VZ 530 VZ Vinogradov, G. V. verfasserin aut Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification 1972 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Dr. Dietrich Steinkopff Verlag 1972 Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depend, in a general case, on temperature, concentration, velocity gradients and the stresses applied. In this sense this theory, like the other theories of the viscoelastic behaviour of a macromolecular system proposed byMarvin andOser, Hayashi, Chompf, andDuiser is of a semi-phenomenological nature. The theory expounded above provides however a more consistent explanation of the viscoelastic behaviour of the polymeric systems under consideration in shear. The description of the most important specific features of the viscoelastic properties of polymeric systems under steady flow and oscillatory (cyclic) deformation is based on unified conceptions. The latter include the ratio of the first normal stress difference to the square of shear stresses; the variation of the viscoelastic functions and relaxation-time spectrum with increasing stresses or deformation amplitudes; the finalizing of the time-temperature superposition of the viscoelastic functions; the prediction of a loss of the fluidity of viscoelastic media with increase of shear stresses and rates, including the main features of this process. It should however be noted that this theory, as it follows from a detailed comparison with experiment, provides a qualitatively approximate description of the viscoelastic properties of monodisperse polymers. For example, the relaxation-time distribution in the region of transition from flow to the high-elasticity plateau appears to be somewhat different than that predicted by the theory. In distinction to what is predicted by the theory, a set of relaxation times in equivalent networks, corresponding to a decrease of molecular weight or to the application of stresses, is not equivalent. This and other shortcomings are an indication of the imperfection of the model which must be improved, probably by introducing intramolecular viscosity or hydrodynamic interaction. Viscoelastic Property Viscoelastic Behaviour Hydrodynamic Interaction Normal Stress Difference Viscoelastic Medium Pokrovsky, V. H. aut Yanovsky, Yu. G. aut Enthalten in Rheologica acta Steinkopff-Verlag, 1961 11(1972), 3-4 vom: Sept., Seite 258-274 (DE-627)129512052 (DE-600)210407-6 (DE-576)014919613 0035-4511 nnns volume:11 year:1972 number:3-4 month:09 pages:258-274 https://doi.org/10.1007/BF01974769 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_24 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_170 GBV_ILN_252 GBV_ILN_285 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2245 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 AR 11 1972 3-4 09 258-274 |
spelling |
10.1007/BF01974769 doi (DE-627)OLC2055982702 (DE-He213)BF01974769-p DE-627 ger DE-627 rakwb eng 540 660 VZ 530 VZ Vinogradov, G. V. verfasserin aut Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification 1972 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Dr. Dietrich Steinkopff Verlag 1972 Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depend, in a general case, on temperature, concentration, velocity gradients and the stresses applied. In this sense this theory, like the other theories of the viscoelastic behaviour of a macromolecular system proposed byMarvin andOser, Hayashi, Chompf, andDuiser is of a semi-phenomenological nature. The theory expounded above provides however a more consistent explanation of the viscoelastic behaviour of the polymeric systems under consideration in shear. The description of the most important specific features of the viscoelastic properties of polymeric systems under steady flow and oscillatory (cyclic) deformation is based on unified conceptions. The latter include the ratio of the first normal stress difference to the square of shear stresses; the variation of the viscoelastic functions and relaxation-time spectrum with increasing stresses or deformation amplitudes; the finalizing of the time-temperature superposition of the viscoelastic functions; the prediction of a loss of the fluidity of viscoelastic media with increase of shear stresses and rates, including the main features of this process. It should however be noted that this theory, as it follows from a detailed comparison with experiment, provides a qualitatively approximate description of the viscoelastic properties of monodisperse polymers. For example, the relaxation-time distribution in the region of transition from flow to the high-elasticity plateau appears to be somewhat different than that predicted by the theory. In distinction to what is predicted by the theory, a set of relaxation times in equivalent networks, corresponding to a decrease of molecular weight or to the application of stresses, is not equivalent. This and other shortcomings are an indication of the imperfection of the model which must be improved, probably by introducing intramolecular viscosity or hydrodynamic interaction. Viscoelastic Property Viscoelastic Behaviour Hydrodynamic Interaction Normal Stress Difference Viscoelastic Medium Pokrovsky, V. H. aut Yanovsky, Yu. G. aut Enthalten in Rheologica acta Steinkopff-Verlag, 1961 11(1972), 3-4 vom: Sept., Seite 258-274 (DE-627)129512052 (DE-600)210407-6 (DE-576)014919613 0035-4511 nnns volume:11 year:1972 number:3-4 month:09 pages:258-274 https://doi.org/10.1007/BF01974769 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_24 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_170 GBV_ILN_252 GBV_ILN_285 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2245 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 AR 11 1972 3-4 09 258-274 |
allfields_unstemmed |
10.1007/BF01974769 doi (DE-627)OLC2055982702 (DE-He213)BF01974769-p DE-627 ger DE-627 rakwb eng 540 660 VZ 530 VZ Vinogradov, G. V. verfasserin aut Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification 1972 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Dr. Dietrich Steinkopff Verlag 1972 Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depend, in a general case, on temperature, concentration, velocity gradients and the stresses applied. In this sense this theory, like the other theories of the viscoelastic behaviour of a macromolecular system proposed byMarvin andOser, Hayashi, Chompf, andDuiser is of a semi-phenomenological nature. The theory expounded above provides however a more consistent explanation of the viscoelastic behaviour of the polymeric systems under consideration in shear. The description of the most important specific features of the viscoelastic properties of polymeric systems under steady flow and oscillatory (cyclic) deformation is based on unified conceptions. The latter include the ratio of the first normal stress difference to the square of shear stresses; the variation of the viscoelastic functions and relaxation-time spectrum with increasing stresses or deformation amplitudes; the finalizing of the time-temperature superposition of the viscoelastic functions; the prediction of a loss of the fluidity of viscoelastic media with increase of shear stresses and rates, including the main features of this process. It should however be noted that this theory, as it follows from a detailed comparison with experiment, provides a qualitatively approximate description of the viscoelastic properties of monodisperse polymers. For example, the relaxation-time distribution in the region of transition from flow to the high-elasticity plateau appears to be somewhat different than that predicted by the theory. In distinction to what is predicted by the theory, a set of relaxation times in equivalent networks, corresponding to a decrease of molecular weight or to the application of stresses, is not equivalent. This and other shortcomings are an indication of the imperfection of the model which must be improved, probably by introducing intramolecular viscosity or hydrodynamic interaction. Viscoelastic Property Viscoelastic Behaviour Hydrodynamic Interaction Normal Stress Difference Viscoelastic Medium Pokrovsky, V. H. aut Yanovsky, Yu. G. aut Enthalten in Rheologica acta Steinkopff-Verlag, 1961 11(1972), 3-4 vom: Sept., Seite 258-274 (DE-627)129512052 (DE-600)210407-6 (DE-576)014919613 0035-4511 nnns volume:11 year:1972 number:3-4 month:09 pages:258-274 https://doi.org/10.1007/BF01974769 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_24 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_170 GBV_ILN_252 GBV_ILN_285 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2245 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 AR 11 1972 3-4 09 258-274 |
allfieldsGer |
10.1007/BF01974769 doi (DE-627)OLC2055982702 (DE-He213)BF01974769-p DE-627 ger DE-627 rakwb eng 540 660 VZ 530 VZ Vinogradov, G. V. verfasserin aut Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification 1972 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Dr. Dietrich Steinkopff Verlag 1972 Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depend, in a general case, on temperature, concentration, velocity gradients and the stresses applied. In this sense this theory, like the other theories of the viscoelastic behaviour of a macromolecular system proposed byMarvin andOser, Hayashi, Chompf, andDuiser is of a semi-phenomenological nature. The theory expounded above provides however a more consistent explanation of the viscoelastic behaviour of the polymeric systems under consideration in shear. The description of the most important specific features of the viscoelastic properties of polymeric systems under steady flow and oscillatory (cyclic) deformation is based on unified conceptions. The latter include the ratio of the first normal stress difference to the square of shear stresses; the variation of the viscoelastic functions and relaxation-time spectrum with increasing stresses or deformation amplitudes; the finalizing of the time-temperature superposition of the viscoelastic functions; the prediction of a loss of the fluidity of viscoelastic media with increase of shear stresses and rates, including the main features of this process. It should however be noted that this theory, as it follows from a detailed comparison with experiment, provides a qualitatively approximate description of the viscoelastic properties of monodisperse polymers. For example, the relaxation-time distribution in the region of transition from flow to the high-elasticity plateau appears to be somewhat different than that predicted by the theory. In distinction to what is predicted by the theory, a set of relaxation times in equivalent networks, corresponding to a decrease of molecular weight or to the application of stresses, is not equivalent. This and other shortcomings are an indication of the imperfection of the model which must be improved, probably by introducing intramolecular viscosity or hydrodynamic interaction. Viscoelastic Property Viscoelastic Behaviour Hydrodynamic Interaction Normal Stress Difference Viscoelastic Medium Pokrovsky, V. H. aut Yanovsky, Yu. G. aut Enthalten in Rheologica acta Steinkopff-Verlag, 1961 11(1972), 3-4 vom: Sept., Seite 258-274 (DE-627)129512052 (DE-600)210407-6 (DE-576)014919613 0035-4511 nnns volume:11 year:1972 number:3-4 month:09 pages:258-274 https://doi.org/10.1007/BF01974769 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_24 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_170 GBV_ILN_252 GBV_ILN_285 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2245 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 AR 11 1972 3-4 09 258-274 |
allfieldsSound |
10.1007/BF01974769 doi (DE-627)OLC2055982702 (DE-He213)BF01974769-p DE-627 ger DE-627 rakwb eng 540 660 VZ 530 VZ Vinogradov, G. V. verfasserin aut Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification 1972 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Dr. Dietrich Steinkopff Verlag 1972 Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depend, in a general case, on temperature, concentration, velocity gradients and the stresses applied. In this sense this theory, like the other theories of the viscoelastic behaviour of a macromolecular system proposed byMarvin andOser, Hayashi, Chompf, andDuiser is of a semi-phenomenological nature. The theory expounded above provides however a more consistent explanation of the viscoelastic behaviour of the polymeric systems under consideration in shear. The description of the most important specific features of the viscoelastic properties of polymeric systems under steady flow and oscillatory (cyclic) deformation is based on unified conceptions. The latter include the ratio of the first normal stress difference to the square of shear stresses; the variation of the viscoelastic functions and relaxation-time spectrum with increasing stresses or deformation amplitudes; the finalizing of the time-temperature superposition of the viscoelastic functions; the prediction of a loss of the fluidity of viscoelastic media with increase of shear stresses and rates, including the main features of this process. It should however be noted that this theory, as it follows from a detailed comparison with experiment, provides a qualitatively approximate description of the viscoelastic properties of monodisperse polymers. For example, the relaxation-time distribution in the region of transition from flow to the high-elasticity plateau appears to be somewhat different than that predicted by the theory. In distinction to what is predicted by the theory, a set of relaxation times in equivalent networks, corresponding to a decrease of molecular weight or to the application of stresses, is not equivalent. This and other shortcomings are an indication of the imperfection of the model which must be improved, probably by introducing intramolecular viscosity or hydrodynamic interaction. Viscoelastic Property Viscoelastic Behaviour Hydrodynamic Interaction Normal Stress Difference Viscoelastic Medium Pokrovsky, V. H. aut Yanovsky, Yu. G. aut Enthalten in Rheologica acta Steinkopff-Verlag, 1961 11(1972), 3-4 vom: Sept., Seite 258-274 (DE-627)129512052 (DE-600)210407-6 (DE-576)014919613 0035-4511 nnns volume:11 year:1972 number:3-4 month:09 pages:258-274 https://doi.org/10.1007/BF01974769 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_24 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_170 GBV_ILN_252 GBV_ILN_285 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2245 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 AR 11 1972 3-4 09 258-274 |
language |
English |
source |
Enthalten in Rheologica acta 11(1972), 3-4 vom: Sept., Seite 258-274 volume:11 year:1972 number:3-4 month:09 pages:258-274 |
sourceStr |
Enthalten in Rheologica acta 11(1972), 3-4 vom: Sept., Seite 258-274 volume:11 year:1972 number:3-4 month:09 pages:258-274 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Viscoelastic Property Viscoelastic Behaviour Hydrodynamic Interaction Normal Stress Difference Viscoelastic Medium |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Rheologica acta |
authorswithroles_txt_mv |
Vinogradov, G. V. @@aut@@ Pokrovsky, V. H. @@aut@@ Yanovsky, Yu. G. @@aut@@ |
publishDateDaySort_date |
1972-09-01T00:00:00Z |
hierarchy_top_id |
129512052 |
dewey-sort |
3540 |
id |
OLC2055982702 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2055982702</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402190929.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1972 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01974769</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2055982702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01974769-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vinogradov, G. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1972</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Dr. Dietrich Steinkopff Verlag 1972</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depend, in a general case, on temperature, concentration, velocity gradients and the stresses applied. In this sense this theory, like the other theories of the viscoelastic behaviour of a macromolecular system proposed byMarvin andOser, Hayashi, Chompf, andDuiser is of a semi-phenomenological nature. The theory expounded above provides however a more consistent explanation of the viscoelastic behaviour of the polymeric systems under consideration in shear. The description of the most important specific features of the viscoelastic properties of polymeric systems under steady flow and oscillatory (cyclic) deformation is based on unified conceptions. The latter include the ratio of the first normal stress difference to the square of shear stresses; the variation of the viscoelastic functions and relaxation-time spectrum with increasing stresses or deformation amplitudes; the finalizing of the time-temperature superposition of the viscoelastic functions; the prediction of a loss of the fluidity of viscoelastic media with increase of shear stresses and rates, including the main features of this process. It should however be noted that this theory, as it follows from a detailed comparison with experiment, provides a qualitatively approximate description of the viscoelastic properties of monodisperse polymers. For example, the relaxation-time distribution in the region of transition from flow to the high-elasticity plateau appears to be somewhat different than that predicted by the theory. In distinction to what is predicted by the theory, a set of relaxation times in equivalent networks, corresponding to a decrease of molecular weight or to the application of stresses, is not equivalent. This and other shortcomings are an indication of the imperfection of the model which must be improved, probably by introducing intramolecular viscosity or hydrodynamic interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic Property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic Behaviour</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamic Interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal Stress Difference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic Medium</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pokrovsky, V. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yanovsky, Yu. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Rheologica acta</subfield><subfield code="d">Steinkopff-Verlag, 1961</subfield><subfield code="g">11(1972), 3-4 vom: Sept., Seite 258-274</subfield><subfield code="w">(DE-627)129512052</subfield><subfield code="w">(DE-600)210407-6</subfield><subfield code="w">(DE-576)014919613</subfield><subfield code="x">0035-4511</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:1972</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:258-274</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01974769</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2245</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">1972</subfield><subfield code="e">3-4</subfield><subfield code="c">09</subfield><subfield code="h">258-274</subfield></datafield></record></collection>
|
author |
Vinogradov, G. V. |
spellingShingle |
Vinogradov, G. V. ddc 540 ddc 530 misc Viscoelastic Property misc Viscoelastic Behaviour misc Hydrodynamic Interaction misc Normal Stress Difference misc Viscoelastic Medium Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification |
authorStr |
Vinogradov, G. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129512052 |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences 660 - Chemical engineering 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0035-4511 |
topic_title |
540 660 VZ 530 VZ Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification Viscoelastic Property Viscoelastic Behaviour Hydrodynamic Interaction Normal Stress Difference Viscoelastic Medium |
topic |
ddc 540 ddc 530 misc Viscoelastic Property misc Viscoelastic Behaviour misc Hydrodynamic Interaction misc Normal Stress Difference misc Viscoelastic Medium |
topic_unstemmed |
ddc 540 ddc 530 misc Viscoelastic Property misc Viscoelastic Behaviour misc Hydrodynamic Interaction misc Normal Stress Difference misc Viscoelastic Medium |
topic_browse |
ddc 540 ddc 530 misc Viscoelastic Property misc Viscoelastic Behaviour misc Hydrodynamic Interaction misc Normal Stress Difference misc Viscoelastic Medium |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Rheologica acta |
hierarchy_parent_id |
129512052 |
dewey-tens |
540 - Chemistry 660 - Chemical engineering 530 - Physics |
hierarchy_top_title |
Rheologica acta |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129512052 (DE-600)210407-6 (DE-576)014919613 |
title |
Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification |
ctrlnum |
(DE-627)OLC2055982702 (DE-He213)BF01974769-p |
title_full |
Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification |
author_sort |
Vinogradov, G. V. |
journal |
Rheologica acta |
journalStr |
Rheologica acta |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
1972 |
contenttype_str_mv |
txt |
container_start_page |
258 |
author_browse |
Vinogradov, G. V. Pokrovsky, V. H. Yanovsky, Yu. G. |
container_volume |
11 |
class |
540 660 VZ 530 VZ |
format_se |
Aufsätze |
author-letter |
Vinogradov, G. V. |
doi_str_mv |
10.1007/BF01974769 |
dewey-full |
540 660 530 |
title_sort |
theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification |
title_auth |
Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification |
abstract |
Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depend, in a general case, on temperature, concentration, velocity gradients and the stresses applied. In this sense this theory, like the other theories of the viscoelastic behaviour of a macromolecular system proposed byMarvin andOser, Hayashi, Chompf, andDuiser is of a semi-phenomenological nature. The theory expounded above provides however a more consistent explanation of the viscoelastic behaviour of the polymeric systems under consideration in shear. The description of the most important specific features of the viscoelastic properties of polymeric systems under steady flow and oscillatory (cyclic) deformation is based on unified conceptions. The latter include the ratio of the first normal stress difference to the square of shear stresses; the variation of the viscoelastic functions and relaxation-time spectrum with increasing stresses or deformation amplitudes; the finalizing of the time-temperature superposition of the viscoelastic functions; the prediction of a loss of the fluidity of viscoelastic media with increase of shear stresses and rates, including the main features of this process. It should however be noted that this theory, as it follows from a detailed comparison with experiment, provides a qualitatively approximate description of the viscoelastic properties of monodisperse polymers. For example, the relaxation-time distribution in the region of transition from flow to the high-elasticity plateau appears to be somewhat different than that predicted by the theory. In distinction to what is predicted by the theory, a set of relaxation times in equivalent networks, corresponding to a decrease of molecular weight or to the application of stresses, is not equivalent. This and other shortcomings are an indication of the imperfection of the model which must be improved, probably by introducing intramolecular viscosity or hydrodynamic interaction. © Dr. Dietrich Steinkopff Verlag 1972 |
abstractGer |
Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depend, in a general case, on temperature, concentration, velocity gradients and the stresses applied. In this sense this theory, like the other theories of the viscoelastic behaviour of a macromolecular system proposed byMarvin andOser, Hayashi, Chompf, andDuiser is of a semi-phenomenological nature. The theory expounded above provides however a more consistent explanation of the viscoelastic behaviour of the polymeric systems under consideration in shear. The description of the most important specific features of the viscoelastic properties of polymeric systems under steady flow and oscillatory (cyclic) deformation is based on unified conceptions. The latter include the ratio of the first normal stress difference to the square of shear stresses; the variation of the viscoelastic functions and relaxation-time spectrum with increasing stresses or deformation amplitudes; the finalizing of the time-temperature superposition of the viscoelastic functions; the prediction of a loss of the fluidity of viscoelastic media with increase of shear stresses and rates, including the main features of this process. It should however be noted that this theory, as it follows from a detailed comparison with experiment, provides a qualitatively approximate description of the viscoelastic properties of monodisperse polymers. For example, the relaxation-time distribution in the region of transition from flow to the high-elasticity plateau appears to be somewhat different than that predicted by the theory. In distinction to what is predicted by the theory, a set of relaxation times in equivalent networks, corresponding to a decrease of molecular weight or to the application of stresses, is not equivalent. This and other shortcomings are an indication of the imperfection of the model which must be improved, probably by introducing intramolecular viscosity or hydrodynamic interaction. © Dr. Dietrich Steinkopff Verlag 1972 |
abstract_unstemmed |
Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depend, in a general case, on temperature, concentration, velocity gradients and the stresses applied. In this sense this theory, like the other theories of the viscoelastic behaviour of a macromolecular system proposed byMarvin andOser, Hayashi, Chompf, andDuiser is of a semi-phenomenological nature. The theory expounded above provides however a more consistent explanation of the viscoelastic behaviour of the polymeric systems under consideration in shear. The description of the most important specific features of the viscoelastic properties of polymeric systems under steady flow and oscillatory (cyclic) deformation is based on unified conceptions. The latter include the ratio of the first normal stress difference to the square of shear stresses; the variation of the viscoelastic functions and relaxation-time spectrum with increasing stresses or deformation amplitudes; the finalizing of the time-temperature superposition of the viscoelastic functions; the prediction of a loss of the fluidity of viscoelastic media with increase of shear stresses and rates, including the main features of this process. It should however be noted that this theory, as it follows from a detailed comparison with experiment, provides a qualitatively approximate description of the viscoelastic properties of monodisperse polymers. For example, the relaxation-time distribution in the region of transition from flow to the high-elasticity plateau appears to be somewhat different than that predicted by the theory. In distinction to what is predicted by the theory, a set of relaxation times in equivalent networks, corresponding to a decrease of molecular weight or to the application of stresses, is not equivalent. This and other shortcomings are an indication of the imperfection of the model which must be improved, probably by introducing intramolecular viscosity or hydrodynamic interaction. © Dr. Dietrich Steinkopff Verlag 1972 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_24 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_170 GBV_ILN_252 GBV_ILN_285 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2245 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
3-4 |
title_short |
Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification |
url |
https://doi.org/10.1007/BF01974769 |
remote_bool |
false |
author2 |
Pokrovsky, V. H. Yanovsky, Yu. G. |
author2Str |
Pokrovsky, V. H. Yanovsky, Yu. G. |
ppnlink |
129512052 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01974769 |
up_date |
2024-07-04T03:26:33.727Z |
_version_ |
1803617402873708544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2055982702</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402190929.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1972 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01974769</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2055982702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01974769-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vinogradov, G. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1972</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Dr. Dietrich Steinkopff Verlag 1972</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The theory proposed in the present article determines the viscoelastic behaviour of concentrated polymer solutions and polymer melts with the aid of two parameters: the chain length between nodesg, or the numberu of nodes per macromolecule, and the monomeric friction coefficientζ0 which depend, in a general case, on temperature, concentration, velocity gradients and the stresses applied. In this sense this theory, like the other theories of the viscoelastic behaviour of a macromolecular system proposed byMarvin andOser, Hayashi, Chompf, andDuiser is of a semi-phenomenological nature. The theory expounded above provides however a more consistent explanation of the viscoelastic behaviour of the polymeric systems under consideration in shear. The description of the most important specific features of the viscoelastic properties of polymeric systems under steady flow and oscillatory (cyclic) deformation is based on unified conceptions. The latter include the ratio of the first normal stress difference to the square of shear stresses; the variation of the viscoelastic functions and relaxation-time spectrum with increasing stresses or deformation amplitudes; the finalizing of the time-temperature superposition of the viscoelastic functions; the prediction of a loss of the fluidity of viscoelastic media with increase of shear stresses and rates, including the main features of this process. It should however be noted that this theory, as it follows from a detailed comparison with experiment, provides a qualitatively approximate description of the viscoelastic properties of monodisperse polymers. For example, the relaxation-time distribution in the region of transition from flow to the high-elasticity plateau appears to be somewhat different than that predicted by the theory. In distinction to what is predicted by the theory, a set of relaxation times in equivalent networks, corresponding to a decrease of molecular weight or to the application of stresses, is not equivalent. This and other shortcomings are an indication of the imperfection of the model which must be improved, probably by introducing intramolecular viscosity or hydrodynamic interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic Property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic Behaviour</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamic Interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal Stress Difference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic Medium</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pokrovsky, V. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yanovsky, Yu. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Rheologica acta</subfield><subfield code="d">Steinkopff-Verlag, 1961</subfield><subfield code="g">11(1972), 3-4 vom: Sept., Seite 258-274</subfield><subfield code="w">(DE-627)129512052</subfield><subfield code="w">(DE-600)210407-6</subfield><subfield code="w">(DE-576)014919613</subfield><subfield code="x">0035-4511</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:1972</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:258-274</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01974769</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2245</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">1972</subfield><subfield code="e">3-4</subfield><subfield code="c">09</subfield><subfield code="h">258-274</subfield></datafield></record></collection>
|
score |
7.3995247 |