Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains
Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness...
Ausführliche Beschreibung
Autor*in: |
Fontelos, Marco A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2000 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2000 |
---|
Übergeordnetes Werk: |
Enthalten in: Archive for rational mechanics and analysis - Springer-Verlag, 1957, 151(2000), 1 vom: März, Seite 1-43 |
---|---|
Übergeordnetes Werk: |
volume:151 ; year:2000 ; number:1 ; month:03 ; pages:1-43 |
Links: |
---|
DOI / URN: |
10.1007/s002050050192 |
---|
Katalog-ID: |
OLC2056412098 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2056412098 | ||
003 | DE-627 | ||
005 | 20230323155359.0 | ||
007 | tu | ||
008 | 200820s2000 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s002050050192 |2 doi | |
035 | |a (DE-627)OLC2056412098 | ||
035 | |a (DE-He213)s002050050192-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Fontelos, Marco A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains |
264 | 1 | |c 2000 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2000 | ||
520 | |a Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness are proved under the assumption of a large kinematic viscosity. The results apply to a family of models including second-order, Maxwell and Oldroyd-B fluids. For second-order fluids, the existence and uniqueness results are extended to the case when the boundary has corner points. | ||
650 | 4 | |a Viscosity | |
650 | 4 | |a Boundary Condition | |
650 | 4 | |a Fluid Flow | |
650 | 4 | |a Kinematic Viscosity | |
650 | 4 | |a Uniqueness Result | |
700 | 1 | |a Friedman, Avner |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Archive for rational mechanics and analysis |d Springer-Verlag, 1957 |g 151(2000), 1 vom: März, Seite 1-43 |w (DE-627)129519618 |w (DE-600)212130-X |w (DE-576)014933004 |x 0003-9527 |7 nnns |
773 | 1 | 8 | |g volume:151 |g year:2000 |g number:1 |g month:03 |g pages:1-43 |
856 | 4 | 1 | |u https://doi.org/10.1007/s002050050192 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 151 |j 2000 |e 1 |c 03 |h 1-43 |
author_variant |
m a f ma maf a f af |
---|---|
matchkey_str |
article:00039527:2000----::ttoayonwoinlifosnhnelk |
hierarchy_sort_str |
2000 |
publishDate |
2000 |
allfields |
10.1007/s002050050192 doi (DE-627)OLC2056412098 (DE-He213)s002050050192-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2000 Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness are proved under the assumption of a large kinematic viscosity. The results apply to a family of models including second-order, Maxwell and Oldroyd-B fluids. For second-order fluids, the existence and uniqueness results are extended to the case when the boundary has corner points. Viscosity Boundary Condition Fluid Flow Kinematic Viscosity Uniqueness Result Friedman, Avner aut Enthalten in Archive for rational mechanics and analysis Springer-Verlag, 1957 151(2000), 1 vom: März, Seite 1-43 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:151 year:2000 number:1 month:03 pages:1-43 https://doi.org/10.1007/s002050050192 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 151 2000 1 03 1-43 |
spelling |
10.1007/s002050050192 doi (DE-627)OLC2056412098 (DE-He213)s002050050192-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2000 Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness are proved under the assumption of a large kinematic viscosity. The results apply to a family of models including second-order, Maxwell and Oldroyd-B fluids. For second-order fluids, the existence and uniqueness results are extended to the case when the boundary has corner points. Viscosity Boundary Condition Fluid Flow Kinematic Viscosity Uniqueness Result Friedman, Avner aut Enthalten in Archive for rational mechanics and analysis Springer-Verlag, 1957 151(2000), 1 vom: März, Seite 1-43 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:151 year:2000 number:1 month:03 pages:1-43 https://doi.org/10.1007/s002050050192 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 151 2000 1 03 1-43 |
allfields_unstemmed |
10.1007/s002050050192 doi (DE-627)OLC2056412098 (DE-He213)s002050050192-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2000 Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness are proved under the assumption of a large kinematic viscosity. The results apply to a family of models including second-order, Maxwell and Oldroyd-B fluids. For second-order fluids, the existence and uniqueness results are extended to the case when the boundary has corner points. Viscosity Boundary Condition Fluid Flow Kinematic Viscosity Uniqueness Result Friedman, Avner aut Enthalten in Archive for rational mechanics and analysis Springer-Verlag, 1957 151(2000), 1 vom: März, Seite 1-43 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:151 year:2000 number:1 month:03 pages:1-43 https://doi.org/10.1007/s002050050192 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 151 2000 1 03 1-43 |
allfieldsGer |
10.1007/s002050050192 doi (DE-627)OLC2056412098 (DE-He213)s002050050192-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2000 Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness are proved under the assumption of a large kinematic viscosity. The results apply to a family of models including second-order, Maxwell and Oldroyd-B fluids. For second-order fluids, the existence and uniqueness results are extended to the case when the boundary has corner points. Viscosity Boundary Condition Fluid Flow Kinematic Viscosity Uniqueness Result Friedman, Avner aut Enthalten in Archive for rational mechanics and analysis Springer-Verlag, 1957 151(2000), 1 vom: März, Seite 1-43 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:151 year:2000 number:1 month:03 pages:1-43 https://doi.org/10.1007/s002050050192 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 151 2000 1 03 1-43 |
allfieldsSound |
10.1007/s002050050192 doi (DE-627)OLC2056412098 (DE-He213)s002050050192-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2000 Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness are proved under the assumption of a large kinematic viscosity. The results apply to a family of models including second-order, Maxwell and Oldroyd-B fluids. For second-order fluids, the existence and uniqueness results are extended to the case when the boundary has corner points. Viscosity Boundary Condition Fluid Flow Kinematic Viscosity Uniqueness Result Friedman, Avner aut Enthalten in Archive for rational mechanics and analysis Springer-Verlag, 1957 151(2000), 1 vom: März, Seite 1-43 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:151 year:2000 number:1 month:03 pages:1-43 https://doi.org/10.1007/s002050050192 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 151 2000 1 03 1-43 |
language |
English |
source |
Enthalten in Archive for rational mechanics and analysis 151(2000), 1 vom: März, Seite 1-43 volume:151 year:2000 number:1 month:03 pages:1-43 |
sourceStr |
Enthalten in Archive for rational mechanics and analysis 151(2000), 1 vom: März, Seite 1-43 volume:151 year:2000 number:1 month:03 pages:1-43 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Viscosity Boundary Condition Fluid Flow Kinematic Viscosity Uniqueness Result |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Archive for rational mechanics and analysis |
authorswithroles_txt_mv |
Fontelos, Marco A. @@aut@@ Friedman, Avner @@aut@@ |
publishDateDaySort_date |
2000-03-01T00:00:00Z |
hierarchy_top_id |
129519618 |
dewey-sort |
3530 |
id |
OLC2056412098 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2056412098</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323155359.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2000 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s002050050192</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2056412098</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s002050050192-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fontelos, Marco A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2000</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness are proved under the assumption of a large kinematic viscosity. The results apply to a family of models including second-order, Maxwell and Oldroyd-B fluids. For second-order fluids, the existence and uniqueness results are extended to the case when the boundary has corner points.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscosity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid Flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinematic Viscosity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uniqueness Result</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friedman, Avner</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive for rational mechanics and analysis</subfield><subfield code="d">Springer-Verlag, 1957</subfield><subfield code="g">151(2000), 1 vom: März, Seite 1-43</subfield><subfield code="w">(DE-627)129519618</subfield><subfield code="w">(DE-600)212130-X</subfield><subfield code="w">(DE-576)014933004</subfield><subfield code="x">0003-9527</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">year:2000</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1-43</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s002050050192</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="j">2000</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">1-43</subfield></datafield></record></collection>
|
author |
Fontelos, Marco A. |
spellingShingle |
Fontelos, Marco A. ddc 530 misc Viscosity misc Boundary Condition misc Fluid Flow misc Kinematic Viscosity misc Uniqueness Result Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains |
authorStr |
Fontelos, Marco A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129519618 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0003-9527 |
topic_title |
530 510 VZ Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains Viscosity Boundary Condition Fluid Flow Kinematic Viscosity Uniqueness Result |
topic |
ddc 530 misc Viscosity misc Boundary Condition misc Fluid Flow misc Kinematic Viscosity misc Uniqueness Result |
topic_unstemmed |
ddc 530 misc Viscosity misc Boundary Condition misc Fluid Flow misc Kinematic Viscosity misc Uniqueness Result |
topic_browse |
ddc 530 misc Viscosity misc Boundary Condition misc Fluid Flow misc Kinematic Viscosity misc Uniqueness Result |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Archive for rational mechanics and analysis |
hierarchy_parent_id |
129519618 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Archive for rational mechanics and analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129519618 (DE-600)212130-X (DE-576)014933004 |
title |
Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains |
ctrlnum |
(DE-627)OLC2056412098 (DE-He213)s002050050192-p |
title_full |
Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains |
author_sort |
Fontelos, Marco A. |
journal |
Archive for rational mechanics and analysis |
journalStr |
Archive for rational mechanics and analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2000 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Fontelos, Marco A. Friedman, Avner |
container_volume |
151 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Fontelos, Marco A. |
doi_str_mv |
10.1007/s002050050192 |
dewey-full |
530 510 |
title_sort |
stationary non-newtonian fluid flows¶in channel-like and pipe-like domains |
title_auth |
Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains |
abstract |
Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness are proved under the assumption of a large kinematic viscosity. The results apply to a family of models including second-order, Maxwell and Oldroyd-B fluids. For second-order fluids, the existence and uniqueness results are extended to the case when the boundary has corner points. © Springer-Verlag Berlin Heidelberg 2000 |
abstractGer |
Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness are proved under the assumption of a large kinematic viscosity. The results apply to a family of models including second-order, Maxwell and Oldroyd-B fluids. For second-order fluids, the existence and uniqueness results are extended to the case when the boundary has corner points. © Springer-Verlag Berlin Heidelberg 2000 |
abstract_unstemmed |
Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness are proved under the assumption of a large kinematic viscosity. The results apply to a family of models including second-order, Maxwell and Oldroyd-B fluids. For second-order fluids, the existence and uniqueness results are extended to the case when the boundary has corner points. © Springer-Verlag Berlin Heidelberg 2000 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains |
url |
https://doi.org/10.1007/s002050050192 |
remote_bool |
false |
author2 |
Friedman, Avner |
author2Str |
Friedman, Avner |
ppnlink |
129519618 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s002050050192 |
up_date |
2024-07-04T04:19:46.101Z |
_version_ |
1803620750303690752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2056412098</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323155359.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2000 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s002050050192</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2056412098</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s002050050192-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fontelos, Marco A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stationary Non-Newtonian Fluid Flows¶in Channel-like and Pipe-like Domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2000</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: This paper is concerned with stationary non-Newtonian fluid in an unbounded domain which geometrically is channel-like in two dimensions or axisymmetric pipe-like in three. The flow satisfies no-slip boundary conditions, and behaves as Poiseuille flow at infinity. Existence and uniqueness are proved under the assumption of a large kinematic viscosity. The results apply to a family of models including second-order, Maxwell and Oldroyd-B fluids. For second-order fluids, the existence and uniqueness results are extended to the case when the boundary has corner points.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscosity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid Flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinematic Viscosity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uniqueness Result</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friedman, Avner</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive for rational mechanics and analysis</subfield><subfield code="d">Springer-Verlag, 1957</subfield><subfield code="g">151(2000), 1 vom: März, Seite 1-43</subfield><subfield code="w">(DE-627)129519618</subfield><subfield code="w">(DE-600)212130-X</subfield><subfield code="w">(DE-576)014933004</subfield><subfield code="x">0003-9527</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">year:2000</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1-43</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s002050050192</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="j">2000</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">1-43</subfield></datafield></record></collection>
|
score |
7.400567 |