Symmetry-Breaking Bifurcations of Charged Drops
Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ...
Ausführliche Beschreibung
Autor*in: |
Fontelos, Marco A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2004 |
---|
Übergeordnetes Werk: |
Enthalten in: Archive for rational mechanics and analysis - Springer-Verlag, 1957, 172(2004), 2 vom: 15. Jan., Seite 267-294 |
---|---|
Übergeordnetes Werk: |
volume:172 ; year:2004 ; number:2 ; day:15 ; month:01 ; pages:267-294 |
Links: |
---|
DOI / URN: |
10.1007/s00205-003-0298-x |
---|
Katalog-ID: |
OLC2056414473 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2056414473 | ||
003 | DE-627 | ||
005 | 20230323155412.0 | ||
007 | tu | ||
008 | 200820s2004 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00205-003-0298-x |2 doi | |
035 | |a (DE-627)OLC2056414473 | ||
035 | |a (DE-He213)s00205-003-0298-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Fontelos, Marco A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Symmetry-Breaking Bifurcations of Charged Drops |
264 | 1 | |c 2004 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2004 | ||
520 | |a Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ_{c} $). In this paper we prove that bifurcation branches of nonspherical shapes originate from each of a sequence of surface-tension coefficients ), where $ γ_{2} $=$ γ_{c} $. We further prove that the spherical drop is stable for any γ>$ γ_{2} $, that is, the solution to the system of fluid equations coupled with the equation for the electrostatic potential created by the charged drop converges to the spherical solution as tρ∞ provided the initial drop is nearly spherical. We finally show that the part of the bifurcation branch at γ=$ γ_{2} $ which gives rise to oblate spheroids is linearly stable, whereas the part of the branch corresponding to prolate spheroids is linearly unstable. | ||
650 | 4 | |a Surface Tension | |
650 | 4 | |a Electrostatic Potential | |
650 | 4 | |a Prolate | |
650 | 4 | |a Dimensionless Number | |
650 | 4 | |a Fluid Equation | |
700 | 1 | |a Friedman, Avner |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Archive for rational mechanics and analysis |d Springer-Verlag, 1957 |g 172(2004), 2 vom: 15. Jan., Seite 267-294 |w (DE-627)129519618 |w (DE-600)212130-X |w (DE-576)014933004 |x 0003-9527 |7 nnns |
773 | 1 | 8 | |g volume:172 |g year:2004 |g number:2 |g day:15 |g month:01 |g pages:267-294 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00205-003-0298-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 172 |j 2004 |e 2 |b 15 |c 01 |h 267-294 |
author_variant |
m a f ma maf a f af |
---|---|
matchkey_str |
article:00039527:2004----::ymtyraigiuctosf |
hierarchy_sort_str |
2004 |
publishDate |
2004 |
allfields |
10.1007/s00205-003-0298-x doi (DE-627)OLC2056414473 (DE-He213)s00205-003-0298-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut Symmetry-Breaking Bifurcations of Charged Drops 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ_{c} $). In this paper we prove that bifurcation branches of nonspherical shapes originate from each of a sequence of surface-tension coefficients ), where $ γ_{2} $=$ γ_{c} $. We further prove that the spherical drop is stable for any γ>$ γ_{2} $, that is, the solution to the system of fluid equations coupled with the equation for the electrostatic potential created by the charged drop converges to the spherical solution as tρ∞ provided the initial drop is nearly spherical. We finally show that the part of the bifurcation branch at γ=$ γ_{2} $ which gives rise to oblate spheroids is linearly stable, whereas the part of the branch corresponding to prolate spheroids is linearly unstable. Surface Tension Electrostatic Potential Prolate Dimensionless Number Fluid Equation Friedman, Avner aut Enthalten in Archive for rational mechanics and analysis Springer-Verlag, 1957 172(2004), 2 vom: 15. Jan., Seite 267-294 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:172 year:2004 number:2 day:15 month:01 pages:267-294 https://doi.org/10.1007/s00205-003-0298-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 172 2004 2 15 01 267-294 |
spelling |
10.1007/s00205-003-0298-x doi (DE-627)OLC2056414473 (DE-He213)s00205-003-0298-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut Symmetry-Breaking Bifurcations of Charged Drops 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ_{c} $). In this paper we prove that bifurcation branches of nonspherical shapes originate from each of a sequence of surface-tension coefficients ), where $ γ_{2} $=$ γ_{c} $. We further prove that the spherical drop is stable for any γ>$ γ_{2} $, that is, the solution to the system of fluid equations coupled with the equation for the electrostatic potential created by the charged drop converges to the spherical solution as tρ∞ provided the initial drop is nearly spherical. We finally show that the part of the bifurcation branch at γ=$ γ_{2} $ which gives rise to oblate spheroids is linearly stable, whereas the part of the branch corresponding to prolate spheroids is linearly unstable. Surface Tension Electrostatic Potential Prolate Dimensionless Number Fluid Equation Friedman, Avner aut Enthalten in Archive for rational mechanics and analysis Springer-Verlag, 1957 172(2004), 2 vom: 15. Jan., Seite 267-294 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:172 year:2004 number:2 day:15 month:01 pages:267-294 https://doi.org/10.1007/s00205-003-0298-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 172 2004 2 15 01 267-294 |
allfields_unstemmed |
10.1007/s00205-003-0298-x doi (DE-627)OLC2056414473 (DE-He213)s00205-003-0298-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut Symmetry-Breaking Bifurcations of Charged Drops 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ_{c} $). In this paper we prove that bifurcation branches of nonspherical shapes originate from each of a sequence of surface-tension coefficients ), where $ γ_{2} $=$ γ_{c} $. We further prove that the spherical drop is stable for any γ>$ γ_{2} $, that is, the solution to the system of fluid equations coupled with the equation for the electrostatic potential created by the charged drop converges to the spherical solution as tρ∞ provided the initial drop is nearly spherical. We finally show that the part of the bifurcation branch at γ=$ γ_{2} $ which gives rise to oblate spheroids is linearly stable, whereas the part of the branch corresponding to prolate spheroids is linearly unstable. Surface Tension Electrostatic Potential Prolate Dimensionless Number Fluid Equation Friedman, Avner aut Enthalten in Archive for rational mechanics and analysis Springer-Verlag, 1957 172(2004), 2 vom: 15. Jan., Seite 267-294 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:172 year:2004 number:2 day:15 month:01 pages:267-294 https://doi.org/10.1007/s00205-003-0298-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 172 2004 2 15 01 267-294 |
allfieldsGer |
10.1007/s00205-003-0298-x doi (DE-627)OLC2056414473 (DE-He213)s00205-003-0298-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut Symmetry-Breaking Bifurcations of Charged Drops 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ_{c} $). In this paper we prove that bifurcation branches of nonspherical shapes originate from each of a sequence of surface-tension coefficients ), where $ γ_{2} $=$ γ_{c} $. We further prove that the spherical drop is stable for any γ>$ γ_{2} $, that is, the solution to the system of fluid equations coupled with the equation for the electrostatic potential created by the charged drop converges to the spherical solution as tρ∞ provided the initial drop is nearly spherical. We finally show that the part of the bifurcation branch at γ=$ γ_{2} $ which gives rise to oblate spheroids is linearly stable, whereas the part of the branch corresponding to prolate spheroids is linearly unstable. Surface Tension Electrostatic Potential Prolate Dimensionless Number Fluid Equation Friedman, Avner aut Enthalten in Archive for rational mechanics and analysis Springer-Verlag, 1957 172(2004), 2 vom: 15. Jan., Seite 267-294 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:172 year:2004 number:2 day:15 month:01 pages:267-294 https://doi.org/10.1007/s00205-003-0298-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 172 2004 2 15 01 267-294 |
allfieldsSound |
10.1007/s00205-003-0298-x doi (DE-627)OLC2056414473 (DE-He213)s00205-003-0298-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut Symmetry-Breaking Bifurcations of Charged Drops 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ_{c} $). In this paper we prove that bifurcation branches of nonspherical shapes originate from each of a sequence of surface-tension coefficients ), where $ γ_{2} $=$ γ_{c} $. We further prove that the spherical drop is stable for any γ>$ γ_{2} $, that is, the solution to the system of fluid equations coupled with the equation for the electrostatic potential created by the charged drop converges to the spherical solution as tρ∞ provided the initial drop is nearly spherical. We finally show that the part of the bifurcation branch at γ=$ γ_{2} $ which gives rise to oblate spheroids is linearly stable, whereas the part of the branch corresponding to prolate spheroids is linearly unstable. Surface Tension Electrostatic Potential Prolate Dimensionless Number Fluid Equation Friedman, Avner aut Enthalten in Archive for rational mechanics and analysis Springer-Verlag, 1957 172(2004), 2 vom: 15. Jan., Seite 267-294 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:172 year:2004 number:2 day:15 month:01 pages:267-294 https://doi.org/10.1007/s00205-003-0298-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 172 2004 2 15 01 267-294 |
language |
English |
source |
Enthalten in Archive for rational mechanics and analysis 172(2004), 2 vom: 15. Jan., Seite 267-294 volume:172 year:2004 number:2 day:15 month:01 pages:267-294 |
sourceStr |
Enthalten in Archive for rational mechanics and analysis 172(2004), 2 vom: 15. Jan., Seite 267-294 volume:172 year:2004 number:2 day:15 month:01 pages:267-294 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Surface Tension Electrostatic Potential Prolate Dimensionless Number Fluid Equation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Archive for rational mechanics and analysis |
authorswithroles_txt_mv |
Fontelos, Marco A. @@aut@@ Friedman, Avner @@aut@@ |
publishDateDaySort_date |
2004-01-15T00:00:00Z |
hierarchy_top_id |
129519618 |
dewey-sort |
3530 |
id |
OLC2056414473 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2056414473</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323155412.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00205-003-0298-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2056414473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00205-003-0298-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fontelos, Marco A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetry-Breaking Bifurcations of Charged Drops</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ_{c} $). In this paper we prove that bifurcation branches of nonspherical shapes originate from each of a sequence of surface-tension coefficients ), where $ γ_{2} $=$ γ_{c} $. We further prove that the spherical drop is stable for any γ>$ γ_{2} $, that is, the solution to the system of fluid equations coupled with the equation for the electrostatic potential created by the charged drop converges to the spherical solution as tρ∞ provided the initial drop is nearly spherical. We finally show that the part of the bifurcation branch at γ=$ γ_{2} $ which gives rise to oblate spheroids is linearly stable, whereas the part of the branch corresponding to prolate spheroids is linearly unstable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface Tension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrostatic Potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prolate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimensionless Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid Equation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friedman, Avner</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive for rational mechanics and analysis</subfield><subfield code="d">Springer-Verlag, 1957</subfield><subfield code="g">172(2004), 2 vom: 15. Jan., Seite 267-294</subfield><subfield code="w">(DE-627)129519618</subfield><subfield code="w">(DE-600)212130-X</subfield><subfield code="w">(DE-576)014933004</subfield><subfield code="x">0003-9527</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:172</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:267-294</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00205-003-0298-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">172</subfield><subfield code="j">2004</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">01</subfield><subfield code="h">267-294</subfield></datafield></record></collection>
|
author |
Fontelos, Marco A. |
spellingShingle |
Fontelos, Marco A. ddc 530 misc Surface Tension misc Electrostatic Potential misc Prolate misc Dimensionless Number misc Fluid Equation Symmetry-Breaking Bifurcations of Charged Drops |
authorStr |
Fontelos, Marco A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129519618 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0003-9527 |
topic_title |
530 510 VZ Symmetry-Breaking Bifurcations of Charged Drops Surface Tension Electrostatic Potential Prolate Dimensionless Number Fluid Equation |
topic |
ddc 530 misc Surface Tension misc Electrostatic Potential misc Prolate misc Dimensionless Number misc Fluid Equation |
topic_unstemmed |
ddc 530 misc Surface Tension misc Electrostatic Potential misc Prolate misc Dimensionless Number misc Fluid Equation |
topic_browse |
ddc 530 misc Surface Tension misc Electrostatic Potential misc Prolate misc Dimensionless Number misc Fluid Equation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Archive for rational mechanics and analysis |
hierarchy_parent_id |
129519618 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Archive for rational mechanics and analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129519618 (DE-600)212130-X (DE-576)014933004 |
title |
Symmetry-Breaking Bifurcations of Charged Drops |
ctrlnum |
(DE-627)OLC2056414473 (DE-He213)s00205-003-0298-x-p |
title_full |
Symmetry-Breaking Bifurcations of Charged Drops |
author_sort |
Fontelos, Marco A. |
journal |
Archive for rational mechanics and analysis |
journalStr |
Archive for rational mechanics and analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
txt |
container_start_page |
267 |
author_browse |
Fontelos, Marco A. Friedman, Avner |
container_volume |
172 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Fontelos, Marco A. |
doi_str_mv |
10.1007/s00205-003-0298-x |
dewey-full |
530 510 |
title_sort |
symmetry-breaking bifurcations of charged drops |
title_auth |
Symmetry-Breaking Bifurcations of Charged Drops |
abstract |
Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ_{c} $). In this paper we prove that bifurcation branches of nonspherical shapes originate from each of a sequence of surface-tension coefficients ), where $ γ_{2} $=$ γ_{c} $. We further prove that the spherical drop is stable for any γ>$ γ_{2} $, that is, the solution to the system of fluid equations coupled with the equation for the electrostatic potential created by the charged drop converges to the spherical solution as tρ∞ provided the initial drop is nearly spherical. We finally show that the part of the bifurcation branch at γ=$ γ_{2} $ which gives rise to oblate spheroids is linearly stable, whereas the part of the branch corresponding to prolate spheroids is linearly unstable. © Springer-Verlag Berlin Heidelberg 2004 |
abstractGer |
Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ_{c} $). In this paper we prove that bifurcation branches of nonspherical shapes originate from each of a sequence of surface-tension coefficients ), where $ γ_{2} $=$ γ_{c} $. We further prove that the spherical drop is stable for any γ>$ γ_{2} $, that is, the solution to the system of fluid equations coupled with the equation for the electrostatic potential created by the charged drop converges to the spherical solution as tρ∞ provided the initial drop is nearly spherical. We finally show that the part of the bifurcation branch at γ=$ γ_{2} $ which gives rise to oblate spheroids is linearly stable, whereas the part of the branch corresponding to prolate spheroids is linearly unstable. © Springer-Verlag Berlin Heidelberg 2004 |
abstract_unstemmed |
Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ_{c} $). In this paper we prove that bifurcation branches of nonspherical shapes originate from each of a sequence of surface-tension coefficients ), where $ γ_{2} $=$ γ_{c} $. We further prove that the spherical drop is stable for any γ>$ γ_{2} $, that is, the solution to the system of fluid equations coupled with the equation for the electrostatic potential created by the charged drop converges to the spherical solution as tρ∞ provided the initial drop is nearly spherical. We finally show that the part of the bifurcation branch at γ=$ γ_{2} $ which gives rise to oblate spheroids is linearly stable, whereas the part of the branch corresponding to prolate spheroids is linearly unstable. © Springer-Verlag Berlin Heidelberg 2004 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Symmetry-Breaking Bifurcations of Charged Drops |
url |
https://doi.org/10.1007/s00205-003-0298-x |
remote_bool |
false |
author2 |
Friedman, Avner |
author2Str |
Friedman, Avner |
ppnlink |
129519618 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00205-003-0298-x |
up_date |
2024-07-04T04:20:05.705Z |
_version_ |
1803620770859974656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2056414473</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323155412.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00205-003-0298-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2056414473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00205-003-0298-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fontelos, Marco A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetry-Breaking Bifurcations of Charged Drops</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. It has been observed experimentally that an electrically charged spherical drop of a conducting fluid becomes nonspherical (in fact, a spheroid) when a dimensionless number X inversely proportional to the surface tension coefficient γ is larger than some critical value (i.e., when γ<$ γ_{c} $). In this paper we prove that bifurcation branches of nonspherical shapes originate from each of a sequence of surface-tension coefficients ), where $ γ_{2} $=$ γ_{c} $. We further prove that the spherical drop is stable for any γ>$ γ_{2} $, that is, the solution to the system of fluid equations coupled with the equation for the electrostatic potential created by the charged drop converges to the spherical solution as tρ∞ provided the initial drop is nearly spherical. We finally show that the part of the bifurcation branch at γ=$ γ_{2} $ which gives rise to oblate spheroids is linearly stable, whereas the part of the branch corresponding to prolate spheroids is linearly unstable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface Tension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrostatic Potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prolate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimensionless Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid Equation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friedman, Avner</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive for rational mechanics and analysis</subfield><subfield code="d">Springer-Verlag, 1957</subfield><subfield code="g">172(2004), 2 vom: 15. Jan., Seite 267-294</subfield><subfield code="w">(DE-627)129519618</subfield><subfield code="w">(DE-600)212130-X</subfield><subfield code="w">(DE-576)014933004</subfield><subfield code="x">0003-9527</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:172</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:267-294</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00205-003-0298-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">172</subfield><subfield code="j">2004</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">01</subfield><subfield code="h">267-294</subfield></datafield></record></collection>
|
score |
7.3993607 |