A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point
Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follo...
Ausführliche Beschreibung
Autor*in: |
Fontelos, Marco A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Archive for rational mechanics and analysis - Springer Berlin Heidelberg, 1957, 217(2014), 2 vom: 16. Dez., Seite 373-411 |
---|---|
Übergeordnetes Werk: |
volume:217 ; year:2014 ; number:2 ; day:16 ; month:12 ; pages:373-411 |
Links: |
---|
DOI / URN: |
10.1007/s00205-014-0834-x |
---|
Katalog-ID: |
OLC2056424142 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2056424142 | ||
003 | DE-627 | ||
005 | 20230323155554.0 | ||
007 | tu | ||
008 | 200820s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00205-014-0834-x |2 doi | |
035 | |a (DE-627)OLC2056424142 | ||
035 | |a (DE-He213)s00205-014-0834-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Fontelos, Marco A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2014 | ||
520 | |a Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follows the so-called D2 law: the second power of the drop-diameter decays linearly in time. In this study we provide a complete mathematical proof of this classical law. We prove that evaporating drops which are initially small perturbations of a sphere collapse to a point and the shape of the drop converges to a self-similar ellipsoid whose center, orientation, and semi-axes are determined by the initial shape. | ||
650 | 4 | |a Spherical Harmonic | |
650 | 4 | |a Free Boundary Problem | |
650 | 4 | |a Spherical Coordinate System | |
650 | 4 | |a Spherical Harmonic Expansion | |
650 | 4 | |a Vector Spherical Harmonic | |
700 | 1 | |a Hong, Seok Hyun |4 aut | |
700 | 1 | |a Hwang, Hyung Ju |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Archive for rational mechanics and analysis |d Springer Berlin Heidelberg, 1957 |g 217(2014), 2 vom: 16. Dez., Seite 373-411 |w (DE-627)129519618 |w (DE-600)212130-X |w (DE-576)014933004 |x 0003-9527 |7 nnns |
773 | 1 | 8 | |g volume:217 |g year:2014 |g number:2 |g day:16 |g month:12 |g pages:373-411 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00205-014-0834-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 217 |j 2014 |e 2 |b 16 |c 12 |h 373-411 |
author_variant |
m a f ma maf s h h sh shh h j h hj hjh |
---|---|
matchkey_str |
article:00039527:2014----::salslsmlriglrtoeaoaigrpelpo |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s00205-014-0834-x doi (DE-627)OLC2056424142 (DE-He213)s00205-014-0834-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follows the so-called D2 law: the second power of the drop-diameter decays linearly in time. In this study we provide a complete mathematical proof of this classical law. We prove that evaporating drops which are initially small perturbations of a sphere collapse to a point and the shape of the drop converges to a self-similar ellipsoid whose center, orientation, and semi-axes are determined by the initial shape. Spherical Harmonic Free Boundary Problem Spherical Coordinate System Spherical Harmonic Expansion Vector Spherical Harmonic Hong, Seok Hyun aut Hwang, Hyung Ju aut Enthalten in Archive for rational mechanics and analysis Springer Berlin Heidelberg, 1957 217(2014), 2 vom: 16. Dez., Seite 373-411 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:217 year:2014 number:2 day:16 month:12 pages:373-411 https://doi.org/10.1007/s00205-014-0834-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4323 GBV_ILN_4700 AR 217 2014 2 16 12 373-411 |
spelling |
10.1007/s00205-014-0834-x doi (DE-627)OLC2056424142 (DE-He213)s00205-014-0834-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follows the so-called D2 law: the second power of the drop-diameter decays linearly in time. In this study we provide a complete mathematical proof of this classical law. We prove that evaporating drops which are initially small perturbations of a sphere collapse to a point and the shape of the drop converges to a self-similar ellipsoid whose center, orientation, and semi-axes are determined by the initial shape. Spherical Harmonic Free Boundary Problem Spherical Coordinate System Spherical Harmonic Expansion Vector Spherical Harmonic Hong, Seok Hyun aut Hwang, Hyung Ju aut Enthalten in Archive for rational mechanics and analysis Springer Berlin Heidelberg, 1957 217(2014), 2 vom: 16. Dez., Seite 373-411 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:217 year:2014 number:2 day:16 month:12 pages:373-411 https://doi.org/10.1007/s00205-014-0834-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4323 GBV_ILN_4700 AR 217 2014 2 16 12 373-411 |
allfields_unstemmed |
10.1007/s00205-014-0834-x doi (DE-627)OLC2056424142 (DE-He213)s00205-014-0834-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follows the so-called D2 law: the second power of the drop-diameter decays linearly in time. In this study we provide a complete mathematical proof of this classical law. We prove that evaporating drops which are initially small perturbations of a sphere collapse to a point and the shape of the drop converges to a self-similar ellipsoid whose center, orientation, and semi-axes are determined by the initial shape. Spherical Harmonic Free Boundary Problem Spherical Coordinate System Spherical Harmonic Expansion Vector Spherical Harmonic Hong, Seok Hyun aut Hwang, Hyung Ju aut Enthalten in Archive for rational mechanics and analysis Springer Berlin Heidelberg, 1957 217(2014), 2 vom: 16. Dez., Seite 373-411 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:217 year:2014 number:2 day:16 month:12 pages:373-411 https://doi.org/10.1007/s00205-014-0834-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4323 GBV_ILN_4700 AR 217 2014 2 16 12 373-411 |
allfieldsGer |
10.1007/s00205-014-0834-x doi (DE-627)OLC2056424142 (DE-He213)s00205-014-0834-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follows the so-called D2 law: the second power of the drop-diameter decays linearly in time. In this study we provide a complete mathematical proof of this classical law. We prove that evaporating drops which are initially small perturbations of a sphere collapse to a point and the shape of the drop converges to a self-similar ellipsoid whose center, orientation, and semi-axes are determined by the initial shape. Spherical Harmonic Free Boundary Problem Spherical Coordinate System Spherical Harmonic Expansion Vector Spherical Harmonic Hong, Seok Hyun aut Hwang, Hyung Ju aut Enthalten in Archive for rational mechanics and analysis Springer Berlin Heidelberg, 1957 217(2014), 2 vom: 16. Dez., Seite 373-411 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:217 year:2014 number:2 day:16 month:12 pages:373-411 https://doi.org/10.1007/s00205-014-0834-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4323 GBV_ILN_4700 AR 217 2014 2 16 12 373-411 |
allfieldsSound |
10.1007/s00205-014-0834-x doi (DE-627)OLC2056424142 (DE-He213)s00205-014-0834-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Fontelos, Marco A. verfasserin aut A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follows the so-called D2 law: the second power of the drop-diameter decays linearly in time. In this study we provide a complete mathematical proof of this classical law. We prove that evaporating drops which are initially small perturbations of a sphere collapse to a point and the shape of the drop converges to a self-similar ellipsoid whose center, orientation, and semi-axes are determined by the initial shape. Spherical Harmonic Free Boundary Problem Spherical Coordinate System Spherical Harmonic Expansion Vector Spherical Harmonic Hong, Seok Hyun aut Hwang, Hyung Ju aut Enthalten in Archive for rational mechanics and analysis Springer Berlin Heidelberg, 1957 217(2014), 2 vom: 16. Dez., Seite 373-411 (DE-627)129519618 (DE-600)212130-X (DE-576)014933004 0003-9527 nnns volume:217 year:2014 number:2 day:16 month:12 pages:373-411 https://doi.org/10.1007/s00205-014-0834-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4323 GBV_ILN_4700 AR 217 2014 2 16 12 373-411 |
language |
English |
source |
Enthalten in Archive for rational mechanics and analysis 217(2014), 2 vom: 16. Dez., Seite 373-411 volume:217 year:2014 number:2 day:16 month:12 pages:373-411 |
sourceStr |
Enthalten in Archive for rational mechanics and analysis 217(2014), 2 vom: 16. Dez., Seite 373-411 volume:217 year:2014 number:2 day:16 month:12 pages:373-411 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Spherical Harmonic Free Boundary Problem Spherical Coordinate System Spherical Harmonic Expansion Vector Spherical Harmonic |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Archive for rational mechanics and analysis |
authorswithroles_txt_mv |
Fontelos, Marco A. @@aut@@ Hong, Seok Hyun @@aut@@ Hwang, Hyung Ju @@aut@@ |
publishDateDaySort_date |
2014-12-16T00:00:00Z |
hierarchy_top_id |
129519618 |
dewey-sort |
3530 |
id |
OLC2056424142 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2056424142</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323155554.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00205-014-0834-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2056424142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00205-014-0834-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fontelos, Marco A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follows the so-called D2 law: the second power of the drop-diameter decays linearly in time. In this study we provide a complete mathematical proof of this classical law. We prove that evaporating drops which are initially small perturbations of a sphere collapse to a point and the shape of the drop converges to a self-similar ellipsoid whose center, orientation, and semi-axes are determined by the initial shape.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical Harmonic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Boundary Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical Coordinate System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical Harmonic Expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector Spherical Harmonic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Seok Hyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hwang, Hyung Ju</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive for rational mechanics and analysis</subfield><subfield code="d">Springer Berlin Heidelberg, 1957</subfield><subfield code="g">217(2014), 2 vom: 16. Dez., Seite 373-411</subfield><subfield code="w">(DE-627)129519618</subfield><subfield code="w">(DE-600)212130-X</subfield><subfield code="w">(DE-576)014933004</subfield><subfield code="x">0003-9527</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:217</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:16</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:373-411</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00205-014-0834-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">217</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">16</subfield><subfield code="c">12</subfield><subfield code="h">373-411</subfield></datafield></record></collection>
|
author |
Fontelos, Marco A. |
spellingShingle |
Fontelos, Marco A. ddc 530 misc Spherical Harmonic misc Free Boundary Problem misc Spherical Coordinate System misc Spherical Harmonic Expansion misc Vector Spherical Harmonic A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point |
authorStr |
Fontelos, Marco A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129519618 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0003-9527 |
topic_title |
530 510 VZ A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point Spherical Harmonic Free Boundary Problem Spherical Coordinate System Spherical Harmonic Expansion Vector Spherical Harmonic |
topic |
ddc 530 misc Spherical Harmonic misc Free Boundary Problem misc Spherical Coordinate System misc Spherical Harmonic Expansion misc Vector Spherical Harmonic |
topic_unstemmed |
ddc 530 misc Spherical Harmonic misc Free Boundary Problem misc Spherical Coordinate System misc Spherical Harmonic Expansion misc Vector Spherical Harmonic |
topic_browse |
ddc 530 misc Spherical Harmonic misc Free Boundary Problem misc Spherical Coordinate System misc Spherical Harmonic Expansion misc Vector Spherical Harmonic |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Archive for rational mechanics and analysis |
hierarchy_parent_id |
129519618 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Archive for rational mechanics and analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129519618 (DE-600)212130-X (DE-576)014933004 |
title |
A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point |
ctrlnum |
(DE-627)OLC2056424142 (DE-He213)s00205-014-0834-x-p |
title_full |
A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point |
author_sort |
Fontelos, Marco A. |
journal |
Archive for rational mechanics and analysis |
journalStr |
Archive for rational mechanics and analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
373 |
author_browse |
Fontelos, Marco A. Hong, Seok Hyun Hwang, Hyung Ju |
container_volume |
217 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Fontelos, Marco A. |
doi_str_mv |
10.1007/s00205-014-0834-x |
dewey-full |
530 510 |
title_sort |
a stable self-similar singularity of evaporating drops: ellipsoidal collapse to a point |
title_auth |
A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point |
abstract |
Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follows the so-called D2 law: the second power of the drop-diameter decays linearly in time. In this study we provide a complete mathematical proof of this classical law. We prove that evaporating drops which are initially small perturbations of a sphere collapse to a point and the shape of the drop converges to a self-similar ellipsoid whose center, orientation, and semi-axes are determined by the initial shape. © Springer-Verlag Berlin Heidelberg 2014 |
abstractGer |
Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follows the so-called D2 law: the second power of the drop-diameter decays linearly in time. In this study we provide a complete mathematical proof of this classical law. We prove that evaporating drops which are initially small perturbations of a sphere collapse to a point and the shape of the drop converges to a self-similar ellipsoid whose center, orientation, and semi-axes are determined by the initial shape. © Springer-Verlag Berlin Heidelberg 2014 |
abstract_unstemmed |
Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follows the so-called D2 law: the second power of the drop-diameter decays linearly in time. In this study we provide a complete mathematical proof of this classical law. We prove that evaporating drops which are initially small perturbations of a sphere collapse to a point and the shape of the drop converges to a self-similar ellipsoid whose center, orientation, and semi-axes are determined by the initial shape. © Springer-Verlag Berlin Heidelberg 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
2 |
title_short |
A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point |
url |
https://doi.org/10.1007/s00205-014-0834-x |
remote_bool |
false |
author2 |
Hong, Seok Hyun Hwang, Hyung Ju |
author2Str |
Hong, Seok Hyun Hwang, Hyung Ju |
ppnlink |
129519618 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00205-014-0834-x |
up_date |
2024-07-04T04:21:22.237Z |
_version_ |
1803620851110641664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2056424142</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323155554.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00205-014-0834-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2056424142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00205-014-0834-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fontelos, Marco A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Stable Self-Similar Singularity of Evaporating Drops: Ellipsoidal Collapse to a Point</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the problem of evaporating drops contracting to a point. Going back to Maxwell and Langmuir, the existence of a spherical solution for which evaporating drops collapse to a point in a self-similar manner is well established in the physical literature. The diameter of the drop follows the so-called D2 law: the second power of the drop-diameter decays linearly in time. In this study we provide a complete mathematical proof of this classical law. We prove that evaporating drops which are initially small perturbations of a sphere collapse to a point and the shape of the drop converges to a self-similar ellipsoid whose center, orientation, and semi-axes are determined by the initial shape.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical Harmonic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Boundary Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical Coordinate System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical Harmonic Expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector Spherical Harmonic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Seok Hyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hwang, Hyung Ju</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive for rational mechanics and analysis</subfield><subfield code="d">Springer Berlin Heidelberg, 1957</subfield><subfield code="g">217(2014), 2 vom: 16. Dez., Seite 373-411</subfield><subfield code="w">(DE-627)129519618</subfield><subfield code="w">(DE-600)212130-X</subfield><subfield code="w">(DE-576)014933004</subfield><subfield code="x">0003-9527</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:217</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:16</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:373-411</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00205-014-0834-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">217</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">16</subfield><subfield code="c">12</subfield><subfield code="h">373-411</subfield></datafield></record></collection>
|
score |
7.4011307 |