Unsteady mixed convection flow in stagnation region adjacent to a vertical surface
Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-depend...
Ausführliche Beschreibung
Autor*in: |
Devi, C. D. S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1991 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 1991 |
---|
Übergeordnetes Werk: |
Enthalten in: Wärme- und Stoffübertragung - Springer-Verlag, 1968, 26(1991), 2 vom: März, Seite 71-79 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:1991 ; number:2 ; month:03 ; pages:71-79 |
Links: |
---|
DOI / URN: |
10.1007/BF01590239 |
---|
Katalog-ID: |
OLC2056468158 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2056468158 | ||
003 | DE-627 | ||
005 | 20230324004925.0 | ||
007 | tu | ||
008 | 200819s1991 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01590239 |2 doi | |
035 | |a (DE-627)OLC2056468158 | ||
035 | |a (DE-He213)BF01590239-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
100 | 1 | |a Devi, C. D. S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Unsteady mixed convection flow in stagnation region adjacent to a vertical surface |
264 | 1 | |c 1991 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1991 | ||
520 | |a Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter λ, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist. | ||
650 | 4 | |a Skin Friction | |
650 | 4 | |a Mass Transfer Coefficient | |
650 | 4 | |a Free Stream Velocity | |
650 | 4 | |a Skin Friction Coefficient | |
650 | 4 | |a Nonlinear Ordinary Differential Equation | |
700 | 1 | |a Takhar, H. S. |4 aut | |
700 | 1 | |a Nath, G. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Wärme- und Stoffübertragung |d Springer-Verlag, 1968 |g 26(1991), 2 vom: März, Seite 71-79 |w (DE-627)130122394 |w (DE-600)506060-6 |w (DE-576)015655563 |x 0042-9929 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:1991 |g number:2 |g month:03 |g pages:71-79 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01590239 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2256 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 26 |j 1991 |e 2 |c 03 |h 71-79 |
author_variant |
c d s d cds cdsd h s t hs hst g n gn |
---|---|
matchkey_str |
article:00429929:1991----::ntayiecnetofoisantorgoajc |
hierarchy_sort_str |
1991 |
publishDate |
1991 |
allfields |
10.1007/BF01590239 doi (DE-627)OLC2056468158 (DE-He213)BF01590239-p DE-627 ger DE-627 rakwb eng 530 620 VZ Devi, C. D. S. verfasserin aut Unsteady mixed convection flow in stagnation region adjacent to a vertical surface 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1991 Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter λ, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist. Skin Friction Mass Transfer Coefficient Free Stream Velocity Skin Friction Coefficient Nonlinear Ordinary Differential Equation Takhar, H. S. aut Nath, G. aut Enthalten in Wärme- und Stoffübertragung Springer-Verlag, 1968 26(1991), 2 vom: März, Seite 71-79 (DE-627)130122394 (DE-600)506060-6 (DE-576)015655563 0042-9929 nnns volume:26 year:1991 number:2 month:03 pages:71-79 https://doi.org/10.1007/BF01590239 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2256 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 26 1991 2 03 71-79 |
spelling |
10.1007/BF01590239 doi (DE-627)OLC2056468158 (DE-He213)BF01590239-p DE-627 ger DE-627 rakwb eng 530 620 VZ Devi, C. D. S. verfasserin aut Unsteady mixed convection flow in stagnation region adjacent to a vertical surface 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1991 Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter λ, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist. Skin Friction Mass Transfer Coefficient Free Stream Velocity Skin Friction Coefficient Nonlinear Ordinary Differential Equation Takhar, H. S. aut Nath, G. aut Enthalten in Wärme- und Stoffübertragung Springer-Verlag, 1968 26(1991), 2 vom: März, Seite 71-79 (DE-627)130122394 (DE-600)506060-6 (DE-576)015655563 0042-9929 nnns volume:26 year:1991 number:2 month:03 pages:71-79 https://doi.org/10.1007/BF01590239 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2256 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 26 1991 2 03 71-79 |
allfields_unstemmed |
10.1007/BF01590239 doi (DE-627)OLC2056468158 (DE-He213)BF01590239-p DE-627 ger DE-627 rakwb eng 530 620 VZ Devi, C. D. S. verfasserin aut Unsteady mixed convection flow in stagnation region adjacent to a vertical surface 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1991 Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter λ, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist. Skin Friction Mass Transfer Coefficient Free Stream Velocity Skin Friction Coefficient Nonlinear Ordinary Differential Equation Takhar, H. S. aut Nath, G. aut Enthalten in Wärme- und Stoffübertragung Springer-Verlag, 1968 26(1991), 2 vom: März, Seite 71-79 (DE-627)130122394 (DE-600)506060-6 (DE-576)015655563 0042-9929 nnns volume:26 year:1991 number:2 month:03 pages:71-79 https://doi.org/10.1007/BF01590239 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2256 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 26 1991 2 03 71-79 |
allfieldsGer |
10.1007/BF01590239 doi (DE-627)OLC2056468158 (DE-He213)BF01590239-p DE-627 ger DE-627 rakwb eng 530 620 VZ Devi, C. D. S. verfasserin aut Unsteady mixed convection flow in stagnation region adjacent to a vertical surface 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1991 Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter λ, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist. Skin Friction Mass Transfer Coefficient Free Stream Velocity Skin Friction Coefficient Nonlinear Ordinary Differential Equation Takhar, H. S. aut Nath, G. aut Enthalten in Wärme- und Stoffübertragung Springer-Verlag, 1968 26(1991), 2 vom: März, Seite 71-79 (DE-627)130122394 (DE-600)506060-6 (DE-576)015655563 0042-9929 nnns volume:26 year:1991 number:2 month:03 pages:71-79 https://doi.org/10.1007/BF01590239 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2256 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 26 1991 2 03 71-79 |
allfieldsSound |
10.1007/BF01590239 doi (DE-627)OLC2056468158 (DE-He213)BF01590239-p DE-627 ger DE-627 rakwb eng 530 620 VZ Devi, C. D. S. verfasserin aut Unsteady mixed convection flow in stagnation region adjacent to a vertical surface 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1991 Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter λ, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist. Skin Friction Mass Transfer Coefficient Free Stream Velocity Skin Friction Coefficient Nonlinear Ordinary Differential Equation Takhar, H. S. aut Nath, G. aut Enthalten in Wärme- und Stoffübertragung Springer-Verlag, 1968 26(1991), 2 vom: März, Seite 71-79 (DE-627)130122394 (DE-600)506060-6 (DE-576)015655563 0042-9929 nnns volume:26 year:1991 number:2 month:03 pages:71-79 https://doi.org/10.1007/BF01590239 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2256 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 26 1991 2 03 71-79 |
language |
English |
source |
Enthalten in Wärme- und Stoffübertragung 26(1991), 2 vom: März, Seite 71-79 volume:26 year:1991 number:2 month:03 pages:71-79 |
sourceStr |
Enthalten in Wärme- und Stoffübertragung 26(1991), 2 vom: März, Seite 71-79 volume:26 year:1991 number:2 month:03 pages:71-79 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Skin Friction Mass Transfer Coefficient Free Stream Velocity Skin Friction Coefficient Nonlinear Ordinary Differential Equation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Wärme- und Stoffübertragung |
authorswithroles_txt_mv |
Devi, C. D. S. @@aut@@ Takhar, H. S. @@aut@@ Nath, G. @@aut@@ |
publishDateDaySort_date |
1991-03-01T00:00:00Z |
hierarchy_top_id |
130122394 |
dewey-sort |
3530 |
id |
OLC2056468158 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2056468158</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324004925.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1991 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01590239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2056468158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01590239-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Devi, C. D. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unsteady mixed convection flow in stagnation region adjacent to a vertical surface</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1991</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1991</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter λ, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skin Friction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass Transfer Coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Stream Velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skin Friction Coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Ordinary Differential Equation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takhar, H. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nath, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Wärme- und Stoffübertragung</subfield><subfield code="d">Springer-Verlag, 1968</subfield><subfield code="g">26(1991), 2 vom: März, Seite 71-79</subfield><subfield code="w">(DE-627)130122394</subfield><subfield code="w">(DE-600)506060-6</subfield><subfield code="w">(DE-576)015655563</subfield><subfield code="x">0042-9929</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:1991</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:71-79</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01590239</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2256</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">1991</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">71-79</subfield></datafield></record></collection>
|
author |
Devi, C. D. S. |
spellingShingle |
Devi, C. D. S. ddc 530 misc Skin Friction misc Mass Transfer Coefficient misc Free Stream Velocity misc Skin Friction Coefficient misc Nonlinear Ordinary Differential Equation Unsteady mixed convection flow in stagnation region adjacent to a vertical surface |
authorStr |
Devi, C. D. S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130122394 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0042-9929 |
topic_title |
530 620 VZ Unsteady mixed convection flow in stagnation region adjacent to a vertical surface Skin Friction Mass Transfer Coefficient Free Stream Velocity Skin Friction Coefficient Nonlinear Ordinary Differential Equation |
topic |
ddc 530 misc Skin Friction misc Mass Transfer Coefficient misc Free Stream Velocity misc Skin Friction Coefficient misc Nonlinear Ordinary Differential Equation |
topic_unstemmed |
ddc 530 misc Skin Friction misc Mass Transfer Coefficient misc Free Stream Velocity misc Skin Friction Coefficient misc Nonlinear Ordinary Differential Equation |
topic_browse |
ddc 530 misc Skin Friction misc Mass Transfer Coefficient misc Free Stream Velocity misc Skin Friction Coefficient misc Nonlinear Ordinary Differential Equation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Wärme- und Stoffübertragung |
hierarchy_parent_id |
130122394 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Wärme- und Stoffübertragung |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130122394 (DE-600)506060-6 (DE-576)015655563 |
title |
Unsteady mixed convection flow in stagnation region adjacent to a vertical surface |
ctrlnum |
(DE-627)OLC2056468158 (DE-He213)BF01590239-p |
title_full |
Unsteady mixed convection flow in stagnation region adjacent to a vertical surface |
author_sort |
Devi, C. D. S. |
journal |
Wärme- und Stoffübertragung |
journalStr |
Wärme- und Stoffübertragung |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
1991 |
contenttype_str_mv |
txt |
container_start_page |
71 |
author_browse |
Devi, C. D. S. Takhar, H. S. Nath, G. |
container_volume |
26 |
class |
530 620 VZ |
format_se |
Aufsätze |
author-letter |
Devi, C. D. S. |
doi_str_mv |
10.1007/BF01590239 |
dewey-full |
530 620 |
title_sort |
unsteady mixed convection flow in stagnation region adjacent to a vertical surface |
title_auth |
Unsteady mixed convection flow in stagnation region adjacent to a vertical surface |
abstract |
Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter λ, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist. © Springer-Verlag 1991 |
abstractGer |
Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter λ, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist. © Springer-Verlag 1991 |
abstract_unstemmed |
Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter λ, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist. © Springer-Verlag 1991 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2256 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Unsteady mixed convection flow in stagnation region adjacent to a vertical surface |
url |
https://doi.org/10.1007/BF01590239 |
remote_bool |
false |
author2 |
Takhar, H. S. Nath, G. |
author2Str |
Takhar, H. S. Nath, G. |
ppnlink |
130122394 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01590239 |
up_date |
2024-07-04T04:25:35.066Z |
_version_ |
1803621116221063168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2056468158</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324004925.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1991 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01590239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2056468158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01590239-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Devi, C. D. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unsteady mixed convection flow in stagnation region adjacent to a vertical surface</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1991</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1991</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstracts The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter λ, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skin Friction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass Transfer Coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Stream Velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skin Friction Coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Ordinary Differential Equation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takhar, H. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nath, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Wärme- und Stoffübertragung</subfield><subfield code="d">Springer-Verlag, 1968</subfield><subfield code="g">26(1991), 2 vom: März, Seite 71-79</subfield><subfield code="w">(DE-627)130122394</subfield><subfield code="w">(DE-600)506060-6</subfield><subfield code="w">(DE-576)015655563</subfield><subfield code="x">0042-9929</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:1991</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:71-79</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01590239</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2256</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">1991</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">71-79</subfield></datafield></record></collection>
|
score |
7.4016895 |