Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks
Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa...
Ausführliche Beschreibung
Autor*in: |
Sun, Fuchun [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1997 |
---|
Anmerkung: |
© Kluwer Academic Publishers 1997 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of intelligent & robotic systems - Kluwer Academic Publishers, 1988, 20(1997), 2-4 vom: Sept., Seite 131-155 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:1997 ; number:2-4 ; month:09 ; pages:131-155 |
Links: |
---|
DOI / URN: |
10.1023/A:1007900125801 |
---|
Katalog-ID: |
OLC2057164284 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2057164284 | ||
003 | DE-627 | ||
005 | 20230503115737.0 | ||
007 | tu | ||
008 | 200820s1997 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1007900125801 |2 doi | |
035 | |a (DE-627)OLC2057164284 | ||
035 | |a (DE-He213)A:1007900125801-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Sun, Fuchun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks |
264 | 1 | |c 1997 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 1997 | ||
520 | |a Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa robot arm with unknown nonlinear dynamics. The robot arm is assumed tohave an upper and lower bound of its inertia matrix norm and its states areavailable for measurement. The discrete variable structure control servestwo purposes, i.e., one is to force the system states to be within the stateregion in which neural networks are used when the system goes out of neuralcontrol; and the other is to improve the tracking performance within the NNapproximation region. Main theory results for designing stable neuralnetwork-based sampled data indirect and direct adaptive controllers aregiven, and the extension of the proposed control approaches to the compositeadaptive control of a flexible-link robot is discussed. Finally, theeffectiveness of the proposed control approaches is illustrated throughsimulation studies. | ||
700 | 1 | |a Sun, Zengqi |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of intelligent & robotic systems |d Kluwer Academic Publishers, 1988 |g 20(1997), 2-4 vom: Sept., Seite 131-155 |w (DE-627)130464864 |w (DE-600)740594-7 |w (DE-576)018667805 |x 0921-0296 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:1997 |g number:2-4 |g month:09 |g pages:131-155 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1007900125801 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2241 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 20 |j 1997 |e 2-4 |c 09 |h 131-155 |
author_variant |
f s fs z s zs |
---|---|
matchkey_str |
article:09210296:1997----::tbeapedtaatvcnrlfooamu |
hierarchy_sort_str |
1997 |
publishDate |
1997 |
allfields |
10.1023/A:1007900125801 doi (DE-627)OLC2057164284 (DE-He213)A:1007900125801-p DE-627 ger DE-627 rakwb eng 004 VZ Sun, Fuchun verfasserin aut Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1997 Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa robot arm with unknown nonlinear dynamics. The robot arm is assumed tohave an upper and lower bound of its inertia matrix norm and its states areavailable for measurement. The discrete variable structure control servestwo purposes, i.e., one is to force the system states to be within the stateregion in which neural networks are used when the system goes out of neuralcontrol; and the other is to improve the tracking performance within the NNapproximation region. Main theory results for designing stable neuralnetwork-based sampled data indirect and direct adaptive controllers aregiven, and the extension of the proposed control approaches to the compositeadaptive control of a flexible-link robot is discussed. Finally, theeffectiveness of the proposed control approaches is illustrated throughsimulation studies. Sun, Zengqi aut Enthalten in Journal of intelligent & robotic systems Kluwer Academic Publishers, 1988 20(1997), 2-4 vom: Sept., Seite 131-155 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:20 year:1997 number:2-4 month:09 pages:131-155 https://doi.org/10.1023/A:1007900125801 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 AR 20 1997 2-4 09 131-155 |
spelling |
10.1023/A:1007900125801 doi (DE-627)OLC2057164284 (DE-He213)A:1007900125801-p DE-627 ger DE-627 rakwb eng 004 VZ Sun, Fuchun verfasserin aut Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1997 Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa robot arm with unknown nonlinear dynamics. The robot arm is assumed tohave an upper and lower bound of its inertia matrix norm and its states areavailable for measurement. The discrete variable structure control servestwo purposes, i.e., one is to force the system states to be within the stateregion in which neural networks are used when the system goes out of neuralcontrol; and the other is to improve the tracking performance within the NNapproximation region. Main theory results for designing stable neuralnetwork-based sampled data indirect and direct adaptive controllers aregiven, and the extension of the proposed control approaches to the compositeadaptive control of a flexible-link robot is discussed. Finally, theeffectiveness of the proposed control approaches is illustrated throughsimulation studies. Sun, Zengqi aut Enthalten in Journal of intelligent & robotic systems Kluwer Academic Publishers, 1988 20(1997), 2-4 vom: Sept., Seite 131-155 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:20 year:1997 number:2-4 month:09 pages:131-155 https://doi.org/10.1023/A:1007900125801 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 AR 20 1997 2-4 09 131-155 |
allfields_unstemmed |
10.1023/A:1007900125801 doi (DE-627)OLC2057164284 (DE-He213)A:1007900125801-p DE-627 ger DE-627 rakwb eng 004 VZ Sun, Fuchun verfasserin aut Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1997 Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa robot arm with unknown nonlinear dynamics. The robot arm is assumed tohave an upper and lower bound of its inertia matrix norm and its states areavailable for measurement. The discrete variable structure control servestwo purposes, i.e., one is to force the system states to be within the stateregion in which neural networks are used when the system goes out of neuralcontrol; and the other is to improve the tracking performance within the NNapproximation region. Main theory results for designing stable neuralnetwork-based sampled data indirect and direct adaptive controllers aregiven, and the extension of the proposed control approaches to the compositeadaptive control of a flexible-link robot is discussed. Finally, theeffectiveness of the proposed control approaches is illustrated throughsimulation studies. Sun, Zengqi aut Enthalten in Journal of intelligent & robotic systems Kluwer Academic Publishers, 1988 20(1997), 2-4 vom: Sept., Seite 131-155 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:20 year:1997 number:2-4 month:09 pages:131-155 https://doi.org/10.1023/A:1007900125801 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 AR 20 1997 2-4 09 131-155 |
allfieldsGer |
10.1023/A:1007900125801 doi (DE-627)OLC2057164284 (DE-He213)A:1007900125801-p DE-627 ger DE-627 rakwb eng 004 VZ Sun, Fuchun verfasserin aut Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1997 Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa robot arm with unknown nonlinear dynamics. The robot arm is assumed tohave an upper and lower bound of its inertia matrix norm and its states areavailable for measurement. The discrete variable structure control servestwo purposes, i.e., one is to force the system states to be within the stateregion in which neural networks are used when the system goes out of neuralcontrol; and the other is to improve the tracking performance within the NNapproximation region. Main theory results for designing stable neuralnetwork-based sampled data indirect and direct adaptive controllers aregiven, and the extension of the proposed control approaches to the compositeadaptive control of a flexible-link robot is discussed. Finally, theeffectiveness of the proposed control approaches is illustrated throughsimulation studies. Sun, Zengqi aut Enthalten in Journal of intelligent & robotic systems Kluwer Academic Publishers, 1988 20(1997), 2-4 vom: Sept., Seite 131-155 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:20 year:1997 number:2-4 month:09 pages:131-155 https://doi.org/10.1023/A:1007900125801 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 AR 20 1997 2-4 09 131-155 |
allfieldsSound |
10.1023/A:1007900125801 doi (DE-627)OLC2057164284 (DE-He213)A:1007900125801-p DE-627 ger DE-627 rakwb eng 004 VZ Sun, Fuchun verfasserin aut Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1997 Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa robot arm with unknown nonlinear dynamics. The robot arm is assumed tohave an upper and lower bound of its inertia matrix norm and its states areavailable for measurement. The discrete variable structure control servestwo purposes, i.e., one is to force the system states to be within the stateregion in which neural networks are used when the system goes out of neuralcontrol; and the other is to improve the tracking performance within the NNapproximation region. Main theory results for designing stable neuralnetwork-based sampled data indirect and direct adaptive controllers aregiven, and the extension of the proposed control approaches to the compositeadaptive control of a flexible-link robot is discussed. Finally, theeffectiveness of the proposed control approaches is illustrated throughsimulation studies. Sun, Zengqi aut Enthalten in Journal of intelligent & robotic systems Kluwer Academic Publishers, 1988 20(1997), 2-4 vom: Sept., Seite 131-155 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:20 year:1997 number:2-4 month:09 pages:131-155 https://doi.org/10.1023/A:1007900125801 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 AR 20 1997 2-4 09 131-155 |
language |
English |
source |
Enthalten in Journal of intelligent & robotic systems 20(1997), 2-4 vom: Sept., Seite 131-155 volume:20 year:1997 number:2-4 month:09 pages:131-155 |
sourceStr |
Enthalten in Journal of intelligent & robotic systems 20(1997), 2-4 vom: Sept., Seite 131-155 volume:20 year:1997 number:2-4 month:09 pages:131-155 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Journal of intelligent & robotic systems |
authorswithroles_txt_mv |
Sun, Fuchun @@aut@@ Sun, Zengqi @@aut@@ |
publishDateDaySort_date |
1997-09-01T00:00:00Z |
hierarchy_top_id |
130464864 |
dewey-sort |
14 |
id |
OLC2057164284 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057164284</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115737.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1007900125801</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057164284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1007900125801-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Fuchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa robot arm with unknown nonlinear dynamics. The robot arm is assumed tohave an upper and lower bound of its inertia matrix norm and its states areavailable for measurement. The discrete variable structure control servestwo purposes, i.e., one is to force the system states to be within the stateregion in which neural networks are used when the system goes out of neuralcontrol; and the other is to improve the tracking performance within the NNapproximation region. Main theory results for designing stable neuralnetwork-based sampled data indirect and direct adaptive controllers aregiven, and the extension of the proposed control approaches to the compositeadaptive control of a flexible-link robot is discussed. Finally, theeffectiveness of the proposed control approaches is illustrated throughsimulation studies.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Zengqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent & robotic systems</subfield><subfield code="d">Kluwer Academic Publishers, 1988</subfield><subfield code="g">20(1997), 2-4 vom: Sept., Seite 131-155</subfield><subfield code="w">(DE-627)130464864</subfield><subfield code="w">(DE-600)740594-7</subfield><subfield code="w">(DE-576)018667805</subfield><subfield code="x">0921-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:2-4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:131-155</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1007900125801</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">1997</subfield><subfield code="e">2-4</subfield><subfield code="c">09</subfield><subfield code="h">131-155</subfield></datafield></record></collection>
|
author |
Sun, Fuchun |
spellingShingle |
Sun, Fuchun ddc 004 Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks |
authorStr |
Sun, Fuchun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130464864 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0921-0296 |
topic_title |
004 VZ Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks |
topic |
ddc 004 |
topic_unstemmed |
ddc 004 |
topic_browse |
ddc 004 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of intelligent & robotic systems |
hierarchy_parent_id |
130464864 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of intelligent & robotic systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 |
title |
Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks |
ctrlnum |
(DE-627)OLC2057164284 (DE-He213)A:1007900125801-p |
title_full |
Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks |
author_sort |
Sun, Fuchun |
journal |
Journal of intelligent & robotic systems |
journalStr |
Journal of intelligent & robotic systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
1997 |
contenttype_str_mv |
txt |
container_start_page |
131 |
author_browse |
Sun, Fuchun Sun, Zengqi |
container_volume |
20 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Sun, Fuchun |
doi_str_mv |
10.1023/A:1007900125801 |
dewey-full |
004 |
title_sort |
stable sampled-data adaptive control of robot arms using neural networks |
title_auth |
Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks |
abstract |
Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa robot arm with unknown nonlinear dynamics. The robot arm is assumed tohave an upper and lower bound of its inertia matrix norm and its states areavailable for measurement. The discrete variable structure control servestwo purposes, i.e., one is to force the system states to be within the stateregion in which neural networks are used when the system goes out of neuralcontrol; and the other is to improve the tracking performance within the NNapproximation region. Main theory results for designing stable neuralnetwork-based sampled data indirect and direct adaptive controllers aregiven, and the extension of the proposed control approaches to the compositeadaptive control of a flexible-link robot is discussed. Finally, theeffectiveness of the proposed control approaches is illustrated throughsimulation studies. © Kluwer Academic Publishers 1997 |
abstractGer |
Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa robot arm with unknown nonlinear dynamics. The robot arm is assumed tohave an upper and lower bound of its inertia matrix norm and its states areavailable for measurement. The discrete variable structure control servestwo purposes, i.e., one is to force the system states to be within the stateregion in which neural networks are used when the system goes out of neuralcontrol; and the other is to improve the tracking performance within the NNapproximation region. Main theory results for designing stable neuralnetwork-based sampled data indirect and direct adaptive controllers aregiven, and the extension of the proposed control approaches to the compositeadaptive control of a flexible-link robot is discussed. Finally, theeffectiveness of the proposed control approaches is illustrated throughsimulation studies. © Kluwer Academic Publishers 1997 |
abstract_unstemmed |
Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa robot arm with unknown nonlinear dynamics. The robot arm is assumed tohave an upper and lower bound of its inertia matrix norm and its states areavailable for measurement. The discrete variable structure control servestwo purposes, i.e., one is to force the system states to be within the stateregion in which neural networks are used when the system goes out of neuralcontrol; and the other is to improve the tracking performance within the NNapproximation region. Main theory results for designing stable neuralnetwork-based sampled data indirect and direct adaptive controllers aregiven, and the extension of the proposed control approaches to the compositeadaptive control of a flexible-link robot is discussed. Finally, theeffectiveness of the proposed control approaches is illustrated throughsimulation studies. © Kluwer Academic Publishers 1997 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 |
container_issue |
2-4 |
title_short |
Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks |
url |
https://doi.org/10.1023/A:1007900125801 |
remote_bool |
false |
author2 |
Sun, Zengqi |
author2Str |
Sun, Zengqi |
ppnlink |
130464864 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1007900125801 |
up_date |
2024-07-03T14:06:27.508Z |
_version_ |
1803567064688885760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057164284</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115737.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1007900125801</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057164284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1007900125801-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Fuchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Stable neural network-based sampled-data indirect and direct adaptivecontrol approaches, which are the integration of a neural network (NN)approach and the adaptive implementation of the discrete variable structurecontrol, are developed in this paper for the trajectory tracking control ofa robot arm with unknown nonlinear dynamics. The robot arm is assumed tohave an upper and lower bound of its inertia matrix norm and its states areavailable for measurement. The discrete variable structure control servestwo purposes, i.e., one is to force the system states to be within the stateregion in which neural networks are used when the system goes out of neuralcontrol; and the other is to improve the tracking performance within the NNapproximation region. Main theory results for designing stable neuralnetwork-based sampled data indirect and direct adaptive controllers aregiven, and the extension of the proposed control approaches to the compositeadaptive control of a flexible-link robot is discussed. Finally, theeffectiveness of the proposed control approaches is illustrated throughsimulation studies.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Zengqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent & robotic systems</subfield><subfield code="d">Kluwer Academic Publishers, 1988</subfield><subfield code="g">20(1997), 2-4 vom: Sept., Seite 131-155</subfield><subfield code="w">(DE-627)130464864</subfield><subfield code="w">(DE-600)740594-7</subfield><subfield code="w">(DE-576)018667805</subfield><subfield code="x">0921-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:2-4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:131-155</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1007900125801</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">1997</subfield><subfield code="e">2-4</subfield><subfield code="c">09</subfield><subfield code="h">131-155</subfield></datafield></record></collection>
|
score |
7.4000044 |