Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors
Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocitie...
Ausführliche Beschreibung
Autor*in: |
Sun, Fuchun [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Anmerkung: |
© Kluwer Academic Publishers 1999 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of intelligent & robotic systems - Kluwer Academic Publishers, 1988, 26(1999), 1 vom: Sept., Seite 91-100 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:1999 ; number:1 ; month:09 ; pages:91-100 |
Links: |
---|
DOI / URN: |
10.1023/A:1008195720685 |
---|
Katalog-ID: |
OLC2057165485 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2057165485 | ||
003 | DE-627 | ||
005 | 20230503115742.0 | ||
007 | tu | ||
008 | 200820s1999 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1008195720685 |2 doi | |
035 | |a (DE-627)OLC2057165485 | ||
035 | |a (DE-He213)A:1008195720685-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Sun, Fuchun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 1999 | ||
520 | |a Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocities and accelerators, and the bound on the NN reconstruction errors is assumed to be unknown. Main theoretical results for designing such a neuro-controller are given, and the control performance of the proposed controller is verified with simulation studies. | ||
700 | 1 | |a Sun, Zengqi |4 aut | |
700 | 1 | |a Zhu, Yunyue |4 aut | |
700 | 1 | |a Lu, Wenjuan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of intelligent & robotic systems |d Kluwer Academic Publishers, 1988 |g 26(1999), 1 vom: Sept., Seite 91-100 |w (DE-627)130464864 |w (DE-600)740594-7 |w (DE-576)018667805 |x 0921-0296 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:1999 |g number:1 |g month:09 |g pages:91-100 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1008195720685 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2241 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 26 |j 1999 |e 1 |c 09 |h 91-100 |
author_variant |
f s fs z s zs y z yz w l wl |
---|---|
matchkey_str |
article:09210296:1999----::tbeeraatvcnrlorbtwttepebudsiainnhn |
hierarchy_sort_str |
1999 |
publishDate |
1999 |
allfields |
10.1023/A:1008195720685 doi (DE-627)OLC2057165485 (DE-He213)A:1008195720685-p DE-627 ger DE-627 rakwb eng 004 VZ Sun, Fuchun verfasserin aut Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1999 Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocities and accelerators, and the bound on the NN reconstruction errors is assumed to be unknown. Main theoretical results for designing such a neuro-controller are given, and the control performance of the proposed controller is verified with simulation studies. Sun, Zengqi aut Zhu, Yunyue aut Lu, Wenjuan aut Enthalten in Journal of intelligent & robotic systems Kluwer Academic Publishers, 1988 26(1999), 1 vom: Sept., Seite 91-100 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:26 year:1999 number:1 month:09 pages:91-100 https://doi.org/10.1023/A:1008195720685 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 AR 26 1999 1 09 91-100 |
spelling |
10.1023/A:1008195720685 doi (DE-627)OLC2057165485 (DE-He213)A:1008195720685-p DE-627 ger DE-627 rakwb eng 004 VZ Sun, Fuchun verfasserin aut Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1999 Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocities and accelerators, and the bound on the NN reconstruction errors is assumed to be unknown. Main theoretical results for designing such a neuro-controller are given, and the control performance of the proposed controller is verified with simulation studies. Sun, Zengqi aut Zhu, Yunyue aut Lu, Wenjuan aut Enthalten in Journal of intelligent & robotic systems Kluwer Academic Publishers, 1988 26(1999), 1 vom: Sept., Seite 91-100 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:26 year:1999 number:1 month:09 pages:91-100 https://doi.org/10.1023/A:1008195720685 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 AR 26 1999 1 09 91-100 |
allfields_unstemmed |
10.1023/A:1008195720685 doi (DE-627)OLC2057165485 (DE-He213)A:1008195720685-p DE-627 ger DE-627 rakwb eng 004 VZ Sun, Fuchun verfasserin aut Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1999 Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocities and accelerators, and the bound on the NN reconstruction errors is assumed to be unknown. Main theoretical results for designing such a neuro-controller are given, and the control performance of the proposed controller is verified with simulation studies. Sun, Zengqi aut Zhu, Yunyue aut Lu, Wenjuan aut Enthalten in Journal of intelligent & robotic systems Kluwer Academic Publishers, 1988 26(1999), 1 vom: Sept., Seite 91-100 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:26 year:1999 number:1 month:09 pages:91-100 https://doi.org/10.1023/A:1008195720685 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 AR 26 1999 1 09 91-100 |
allfieldsGer |
10.1023/A:1008195720685 doi (DE-627)OLC2057165485 (DE-He213)A:1008195720685-p DE-627 ger DE-627 rakwb eng 004 VZ Sun, Fuchun verfasserin aut Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1999 Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocities and accelerators, and the bound on the NN reconstruction errors is assumed to be unknown. Main theoretical results for designing such a neuro-controller are given, and the control performance of the proposed controller is verified with simulation studies. Sun, Zengqi aut Zhu, Yunyue aut Lu, Wenjuan aut Enthalten in Journal of intelligent & robotic systems Kluwer Academic Publishers, 1988 26(1999), 1 vom: Sept., Seite 91-100 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:26 year:1999 number:1 month:09 pages:91-100 https://doi.org/10.1023/A:1008195720685 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 AR 26 1999 1 09 91-100 |
allfieldsSound |
10.1023/A:1008195720685 doi (DE-627)OLC2057165485 (DE-He213)A:1008195720685-p DE-627 ger DE-627 rakwb eng 004 VZ Sun, Fuchun verfasserin aut Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1999 Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocities and accelerators, and the bound on the NN reconstruction errors is assumed to be unknown. Main theoretical results for designing such a neuro-controller are given, and the control performance of the proposed controller is verified with simulation studies. Sun, Zengqi aut Zhu, Yunyue aut Lu, Wenjuan aut Enthalten in Journal of intelligent & robotic systems Kluwer Academic Publishers, 1988 26(1999), 1 vom: Sept., Seite 91-100 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:26 year:1999 number:1 month:09 pages:91-100 https://doi.org/10.1023/A:1008195720685 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 AR 26 1999 1 09 91-100 |
language |
English |
source |
Enthalten in Journal of intelligent & robotic systems 26(1999), 1 vom: Sept., Seite 91-100 volume:26 year:1999 number:1 month:09 pages:91-100 |
sourceStr |
Enthalten in Journal of intelligent & robotic systems 26(1999), 1 vom: Sept., Seite 91-100 volume:26 year:1999 number:1 month:09 pages:91-100 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Journal of intelligent & robotic systems |
authorswithroles_txt_mv |
Sun, Fuchun @@aut@@ Sun, Zengqi @@aut@@ Zhu, Yunyue @@aut@@ Lu, Wenjuan @@aut@@ |
publishDateDaySort_date |
1999-09-01T00:00:00Z |
hierarchy_top_id |
130464864 |
dewey-sort |
14 |
id |
OLC2057165485 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057165485</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115742.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1008195720685</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057165485</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1008195720685-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Fuchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocities and accelerators, and the bound on the NN reconstruction errors is assumed to be unknown. Main theoretical results for designing such a neuro-controller are given, and the control performance of the proposed controller is verified with simulation studies.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Zengqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yunyue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Wenjuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent & robotic systems</subfield><subfield code="d">Kluwer Academic Publishers, 1988</subfield><subfield code="g">26(1999), 1 vom: Sept., Seite 91-100</subfield><subfield code="w">(DE-627)130464864</subfield><subfield code="w">(DE-600)740594-7</subfield><subfield code="w">(DE-576)018667805</subfield><subfield code="x">0921-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:91-100</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1008195720685</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">1999</subfield><subfield code="e">1</subfield><subfield code="c">09</subfield><subfield code="h">91-100</subfield></datafield></record></collection>
|
author |
Sun, Fuchun |
spellingShingle |
Sun, Fuchun ddc 004 Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors |
authorStr |
Sun, Fuchun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130464864 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0921-0296 |
topic_title |
004 VZ Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors |
topic |
ddc 004 |
topic_unstemmed |
ddc 004 |
topic_browse |
ddc 004 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of intelligent & robotic systems |
hierarchy_parent_id |
130464864 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of intelligent & robotic systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 |
title |
Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors |
ctrlnum |
(DE-627)OLC2057165485 (DE-He213)A:1008195720685-p |
title_full |
Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors |
author_sort |
Sun, Fuchun |
journal |
Journal of intelligent & robotic systems |
journalStr |
Journal of intelligent & robotic systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
91 |
author_browse |
Sun, Fuchun Sun, Zengqi Zhu, Yunyue Lu, Wenjuan |
container_volume |
26 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Sun, Fuchun |
doi_str_mv |
10.1023/A:1008195720685 |
dewey-full |
004 |
title_sort |
stable neuro-adaptive control for robots with the upper bound estimation on the neural approximation errors |
title_auth |
Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors |
abstract |
Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocities and accelerators, and the bound on the NN reconstruction errors is assumed to be unknown. Main theoretical results for designing such a neuro-controller are given, and the control performance of the proposed controller is verified with simulation studies. © Kluwer Academic Publishers 1999 |
abstractGer |
Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocities and accelerators, and the bound on the NN reconstruction errors is assumed to be unknown. Main theoretical results for designing such a neuro-controller are given, and the control performance of the proposed controller is verified with simulation studies. © Kluwer Academic Publishers 1999 |
abstract_unstemmed |
Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocities and accelerators, and the bound on the NN reconstruction errors is assumed to be unknown. Main theoretical results for designing such a neuro-controller are given, and the control performance of the proposed controller is verified with simulation studies. © Kluwer Academic Publishers 1999 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_2241 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4318 |
container_issue |
1 |
title_short |
Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors |
url |
https://doi.org/10.1023/A:1008195720685 |
remote_bool |
false |
author2 |
Sun, Zengqi Zhu, Yunyue Lu, Wenjuan |
author2Str |
Sun, Zengqi Zhu, Yunyue Lu, Wenjuan |
ppnlink |
130464864 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1008195720685 |
up_date |
2024-07-03T14:06:42.473Z |
_version_ |
1803567080376631296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057165485</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115742.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1008195720685</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057165485</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1008195720685-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Fuchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An indirect adaptive control approach is developed in this paper for robots with unknown nonlinear dynamics using neural networks (NNs). A key property of the proposed approach is that the actual joint angle values in the control law are replaced by the desired joint angles, angle velocities and accelerators, and the bound on the NN reconstruction errors is assumed to be unknown. Main theoretical results for designing such a neuro-controller are given, and the control performance of the proposed controller is verified with simulation studies.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Zengqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yunyue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Wenjuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent & robotic systems</subfield><subfield code="d">Kluwer Academic Publishers, 1988</subfield><subfield code="g">26(1999), 1 vom: Sept., Seite 91-100</subfield><subfield code="w">(DE-627)130464864</subfield><subfield code="w">(DE-600)740594-7</subfield><subfield code="w">(DE-576)018667805</subfield><subfield code="x">0921-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:91-100</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1008195720685</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">1999</subfield><subfield code="e">1</subfield><subfield code="c">09</subfield><subfield code="h">91-100</subfield></datafield></record></collection>
|
score |
7.400791 |