Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor
Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in t...
Ausführliche Beschreibung
Autor*in: |
Xu, Yilin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media Dordrecht 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of intelligent & robotic systems - Springer Netherlands, 1988, 88(2017), 1 vom: 02. Apr., Seite 19-35 |
---|---|
Übergeordnetes Werk: |
volume:88 ; year:2017 ; number:1 ; day:02 ; month:04 ; pages:19-35 |
Links: |
---|
DOI / URN: |
10.1007/s10846-017-0532-7 |
---|
Katalog-ID: |
OLC2057183920 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2057183920 | ||
003 | DE-627 | ||
005 | 20230503120009.0 | ||
007 | tu | ||
008 | 200820s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10846-017-0532-7 |2 doi | |
035 | |a (DE-627)OLC2057183920 | ||
035 | |a (DE-He213)s10846-017-0532-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Xu, Yilin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media Dordrecht 2017 | ||
520 | |a Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in the harsh environment. There is no electric device installed on the lower limb of the robot. The indirect force-estimation method, which is based on its spatial parallel mechanism leg, can estimate the external force exerted on the foot tip. In this paper, an adaptive gait is designed after observing human actions. Experiments are carried out to observe how a human walks through the uneven ground when his/her eyes are covered. A static tripod gait mimics the human behavior during the blind walking. When the foot collides with the obstacle, the robot will adjust the foot’s height and try to overcome the obstacle. Just like human blind walking, the robot foot tries different locations before it steps on somewhere. The gait also detects if the robot is facing a ditch too deep to step or an obstacle is too high to step on. The gait is implemented in the real-time control system. Experiments are carried out to validate the proposed gait. The robot walked through the uneven ground with maximum obstacle height of 0.2m successfully. The proposed gait enables the robot without foot tip force sensors to walk through the field with obstacles. | ||
650 | 4 | |a Hexapod | |
650 | 4 | |a Adaptive gait | |
650 | 4 | |a Blind walking | |
650 | 4 | |a Bio-inspired | |
700 | 1 | |a Gao, Feng |4 aut | |
700 | 1 | |a Pan, Yang |4 aut | |
700 | 1 | |a Chai, Xun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of intelligent & robotic systems |d Springer Netherlands, 1988 |g 88(2017), 1 vom: 02. Apr., Seite 19-35 |w (DE-627)130464864 |w (DE-600)740594-7 |w (DE-576)018667805 |x 0921-0296 |7 nnns |
773 | 1 | 8 | |g volume:88 |g year:2017 |g number:1 |g day:02 |g month:04 |g pages:19-35 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10846-017-0532-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 88 |j 2017 |e 1 |b 02 |c 04 |h 19-35 |
author_variant |
y x yx f g fg y p yp x c xc |
---|---|
matchkey_str |
article:09210296:2017----::eaoaatvgiisiebhmneairosxegdo |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s10846-017-0532-7 doi (DE-627)OLC2057183920 (DE-He213)s10846-017-0532-7-p DE-627 ger DE-627 rakwb eng 004 VZ Xu, Yilin verfasserin aut Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2017 Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in the harsh environment. There is no electric device installed on the lower limb of the robot. The indirect force-estimation method, which is based on its spatial parallel mechanism leg, can estimate the external force exerted on the foot tip. In this paper, an adaptive gait is designed after observing human actions. Experiments are carried out to observe how a human walks through the uneven ground when his/her eyes are covered. A static tripod gait mimics the human behavior during the blind walking. When the foot collides with the obstacle, the robot will adjust the foot’s height and try to overcome the obstacle. Just like human blind walking, the robot foot tries different locations before it steps on somewhere. The gait also detects if the robot is facing a ditch too deep to step or an obstacle is too high to step on. The gait is implemented in the real-time control system. Experiments are carried out to validate the proposed gait. The robot walked through the uneven ground with maximum obstacle height of 0.2m successfully. The proposed gait enables the robot without foot tip force sensors to walk through the field with obstacles. Hexapod Adaptive gait Blind walking Bio-inspired Gao, Feng aut Pan, Yang aut Chai, Xun aut Enthalten in Journal of intelligent & robotic systems Springer Netherlands, 1988 88(2017), 1 vom: 02. Apr., Seite 19-35 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:88 year:2017 number:1 day:02 month:04 pages:19-35 https://doi.org/10.1007/s10846-017-0532-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 88 2017 1 02 04 19-35 |
spelling |
10.1007/s10846-017-0532-7 doi (DE-627)OLC2057183920 (DE-He213)s10846-017-0532-7-p DE-627 ger DE-627 rakwb eng 004 VZ Xu, Yilin verfasserin aut Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2017 Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in the harsh environment. There is no electric device installed on the lower limb of the robot. The indirect force-estimation method, which is based on its spatial parallel mechanism leg, can estimate the external force exerted on the foot tip. In this paper, an adaptive gait is designed after observing human actions. Experiments are carried out to observe how a human walks through the uneven ground when his/her eyes are covered. A static tripod gait mimics the human behavior during the blind walking. When the foot collides with the obstacle, the robot will adjust the foot’s height and try to overcome the obstacle. Just like human blind walking, the robot foot tries different locations before it steps on somewhere. The gait also detects if the robot is facing a ditch too deep to step or an obstacle is too high to step on. The gait is implemented in the real-time control system. Experiments are carried out to validate the proposed gait. The robot walked through the uneven ground with maximum obstacle height of 0.2m successfully. The proposed gait enables the robot without foot tip force sensors to walk through the field with obstacles. Hexapod Adaptive gait Blind walking Bio-inspired Gao, Feng aut Pan, Yang aut Chai, Xun aut Enthalten in Journal of intelligent & robotic systems Springer Netherlands, 1988 88(2017), 1 vom: 02. Apr., Seite 19-35 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:88 year:2017 number:1 day:02 month:04 pages:19-35 https://doi.org/10.1007/s10846-017-0532-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 88 2017 1 02 04 19-35 |
allfields_unstemmed |
10.1007/s10846-017-0532-7 doi (DE-627)OLC2057183920 (DE-He213)s10846-017-0532-7-p DE-627 ger DE-627 rakwb eng 004 VZ Xu, Yilin verfasserin aut Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2017 Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in the harsh environment. There is no electric device installed on the lower limb of the robot. The indirect force-estimation method, which is based on its spatial parallel mechanism leg, can estimate the external force exerted on the foot tip. In this paper, an adaptive gait is designed after observing human actions. Experiments are carried out to observe how a human walks through the uneven ground when his/her eyes are covered. A static tripod gait mimics the human behavior during the blind walking. When the foot collides with the obstacle, the robot will adjust the foot’s height and try to overcome the obstacle. Just like human blind walking, the robot foot tries different locations before it steps on somewhere. The gait also detects if the robot is facing a ditch too deep to step or an obstacle is too high to step on. The gait is implemented in the real-time control system. Experiments are carried out to validate the proposed gait. The robot walked through the uneven ground with maximum obstacle height of 0.2m successfully. The proposed gait enables the robot without foot tip force sensors to walk through the field with obstacles. Hexapod Adaptive gait Blind walking Bio-inspired Gao, Feng aut Pan, Yang aut Chai, Xun aut Enthalten in Journal of intelligent & robotic systems Springer Netherlands, 1988 88(2017), 1 vom: 02. Apr., Seite 19-35 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:88 year:2017 number:1 day:02 month:04 pages:19-35 https://doi.org/10.1007/s10846-017-0532-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 88 2017 1 02 04 19-35 |
allfieldsGer |
10.1007/s10846-017-0532-7 doi (DE-627)OLC2057183920 (DE-He213)s10846-017-0532-7-p DE-627 ger DE-627 rakwb eng 004 VZ Xu, Yilin verfasserin aut Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2017 Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in the harsh environment. There is no electric device installed on the lower limb of the robot. The indirect force-estimation method, which is based on its spatial parallel mechanism leg, can estimate the external force exerted on the foot tip. In this paper, an adaptive gait is designed after observing human actions. Experiments are carried out to observe how a human walks through the uneven ground when his/her eyes are covered. A static tripod gait mimics the human behavior during the blind walking. When the foot collides with the obstacle, the robot will adjust the foot’s height and try to overcome the obstacle. Just like human blind walking, the robot foot tries different locations before it steps on somewhere. The gait also detects if the robot is facing a ditch too deep to step or an obstacle is too high to step on. The gait is implemented in the real-time control system. Experiments are carried out to validate the proposed gait. The robot walked through the uneven ground with maximum obstacle height of 0.2m successfully. The proposed gait enables the robot without foot tip force sensors to walk through the field with obstacles. Hexapod Adaptive gait Blind walking Bio-inspired Gao, Feng aut Pan, Yang aut Chai, Xun aut Enthalten in Journal of intelligent & robotic systems Springer Netherlands, 1988 88(2017), 1 vom: 02. Apr., Seite 19-35 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:88 year:2017 number:1 day:02 month:04 pages:19-35 https://doi.org/10.1007/s10846-017-0532-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 88 2017 1 02 04 19-35 |
allfieldsSound |
10.1007/s10846-017-0532-7 doi (DE-627)OLC2057183920 (DE-He213)s10846-017-0532-7-p DE-627 ger DE-627 rakwb eng 004 VZ Xu, Yilin verfasserin aut Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2017 Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in the harsh environment. There is no electric device installed on the lower limb of the robot. The indirect force-estimation method, which is based on its spatial parallel mechanism leg, can estimate the external force exerted on the foot tip. In this paper, an adaptive gait is designed after observing human actions. Experiments are carried out to observe how a human walks through the uneven ground when his/her eyes are covered. A static tripod gait mimics the human behavior during the blind walking. When the foot collides with the obstacle, the robot will adjust the foot’s height and try to overcome the obstacle. Just like human blind walking, the robot foot tries different locations before it steps on somewhere. The gait also detects if the robot is facing a ditch too deep to step or an obstacle is too high to step on. The gait is implemented in the real-time control system. Experiments are carried out to validate the proposed gait. The robot walked through the uneven ground with maximum obstacle height of 0.2m successfully. The proposed gait enables the robot without foot tip force sensors to walk through the field with obstacles. Hexapod Adaptive gait Blind walking Bio-inspired Gao, Feng aut Pan, Yang aut Chai, Xun aut Enthalten in Journal of intelligent & robotic systems Springer Netherlands, 1988 88(2017), 1 vom: 02. Apr., Seite 19-35 (DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 0921-0296 nnns volume:88 year:2017 number:1 day:02 month:04 pages:19-35 https://doi.org/10.1007/s10846-017-0532-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 88 2017 1 02 04 19-35 |
language |
English |
source |
Enthalten in Journal of intelligent & robotic systems 88(2017), 1 vom: 02. Apr., Seite 19-35 volume:88 year:2017 number:1 day:02 month:04 pages:19-35 |
sourceStr |
Enthalten in Journal of intelligent & robotic systems 88(2017), 1 vom: 02. Apr., Seite 19-35 volume:88 year:2017 number:1 day:02 month:04 pages:19-35 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hexapod Adaptive gait Blind walking Bio-inspired |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Journal of intelligent & robotic systems |
authorswithroles_txt_mv |
Xu, Yilin @@aut@@ Gao, Feng @@aut@@ Pan, Yang @@aut@@ Chai, Xun @@aut@@ |
publishDateDaySort_date |
2017-04-02T00:00:00Z |
hierarchy_top_id |
130464864 |
dewey-sort |
14 |
id |
OLC2057183920 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057183920</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503120009.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10846-017-0532-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057183920</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10846-017-0532-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Yilin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in the harsh environment. There is no electric device installed on the lower limb of the robot. The indirect force-estimation method, which is based on its spatial parallel mechanism leg, can estimate the external force exerted on the foot tip. In this paper, an adaptive gait is designed after observing human actions. Experiments are carried out to observe how a human walks through the uneven ground when his/her eyes are covered. A static tripod gait mimics the human behavior during the blind walking. When the foot collides with the obstacle, the robot will adjust the foot’s height and try to overcome the obstacle. Just like human blind walking, the robot foot tries different locations before it steps on somewhere. The gait also detects if the robot is facing a ditch too deep to step or an obstacle is too high to step on. The gait is implemented in the real-time control system. Experiments are carried out to validate the proposed gait. The robot walked through the uneven ground with maximum obstacle height of 0.2m successfully. The proposed gait enables the robot without foot tip force sensors to walk through the field with obstacles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hexapod</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive gait</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blind walking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bio-inspired</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Feng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chai, Xun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent & robotic systems</subfield><subfield code="d">Springer Netherlands, 1988</subfield><subfield code="g">88(2017), 1 vom: 02. Apr., Seite 19-35</subfield><subfield code="w">(DE-627)130464864</subfield><subfield code="w">(DE-600)740594-7</subfield><subfield code="w">(DE-576)018667805</subfield><subfield code="x">0921-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:19-35</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10846-017-0532-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">04</subfield><subfield code="h">19-35</subfield></datafield></record></collection>
|
author |
Xu, Yilin |
spellingShingle |
Xu, Yilin ddc 004 misc Hexapod misc Adaptive gait misc Blind walking misc Bio-inspired Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor |
authorStr |
Xu, Yilin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130464864 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0921-0296 |
topic_title |
004 VZ Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor Hexapod Adaptive gait Blind walking Bio-inspired |
topic |
ddc 004 misc Hexapod misc Adaptive gait misc Blind walking misc Bio-inspired |
topic_unstemmed |
ddc 004 misc Hexapod misc Adaptive gait misc Blind walking misc Bio-inspired |
topic_browse |
ddc 004 misc Hexapod misc Adaptive gait misc Blind walking misc Bio-inspired |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of intelligent & robotic systems |
hierarchy_parent_id |
130464864 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of intelligent & robotic systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130464864 (DE-600)740594-7 (DE-576)018667805 |
title |
Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor |
ctrlnum |
(DE-627)OLC2057183920 (DE-He213)s10846-017-0532-7-p |
title_full |
Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor |
author_sort |
Xu, Yilin |
journal |
Journal of intelligent & robotic systems |
journalStr |
Journal of intelligent & robotic systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
19 |
author_browse |
Xu, Yilin Gao, Feng Pan, Yang Chai, Xun |
container_volume |
88 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Xu, Yilin |
doi_str_mv |
10.1007/s10846-017-0532-7 |
dewey-full |
004 |
title_sort |
hexapod adaptive gait inspired by human behavior for six-legged robot without force sensor |
title_auth |
Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor |
abstract |
Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in the harsh environment. There is no electric device installed on the lower limb of the robot. The indirect force-estimation method, which is based on its spatial parallel mechanism leg, can estimate the external force exerted on the foot tip. In this paper, an adaptive gait is designed after observing human actions. Experiments are carried out to observe how a human walks through the uneven ground when his/her eyes are covered. A static tripod gait mimics the human behavior during the blind walking. When the foot collides with the obstacle, the robot will adjust the foot’s height and try to overcome the obstacle. Just like human blind walking, the robot foot tries different locations before it steps on somewhere. The gait also detects if the robot is facing a ditch too deep to step or an obstacle is too high to step on. The gait is implemented in the real-time control system. Experiments are carried out to validate the proposed gait. The robot walked through the uneven ground with maximum obstacle height of 0.2m successfully. The proposed gait enables the robot without foot tip force sensors to walk through the field with obstacles. © Springer Science+Business Media Dordrecht 2017 |
abstractGer |
Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in the harsh environment. There is no electric device installed on the lower limb of the robot. The indirect force-estimation method, which is based on its spatial parallel mechanism leg, can estimate the external force exerted on the foot tip. In this paper, an adaptive gait is designed after observing human actions. Experiments are carried out to observe how a human walks through the uneven ground when his/her eyes are covered. A static tripod gait mimics the human behavior during the blind walking. When the foot collides with the obstacle, the robot will adjust the foot’s height and try to overcome the obstacle. Just like human blind walking, the robot foot tries different locations before it steps on somewhere. The gait also detects if the robot is facing a ditch too deep to step or an obstacle is too high to step on. The gait is implemented in the real-time control system. Experiments are carried out to validate the proposed gait. The robot walked through the uneven ground with maximum obstacle height of 0.2m successfully. The proposed gait enables the robot without foot tip force sensors to walk through the field with obstacles. © Springer Science+Business Media Dordrecht 2017 |
abstract_unstemmed |
Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in the harsh environment. There is no electric device installed on the lower limb of the robot. The indirect force-estimation method, which is based on its spatial parallel mechanism leg, can estimate the external force exerted on the foot tip. In this paper, an adaptive gait is designed after observing human actions. Experiments are carried out to observe how a human walks through the uneven ground when his/her eyes are covered. A static tripod gait mimics the human behavior during the blind walking. When the foot collides with the obstacle, the robot will adjust the foot’s height and try to overcome the obstacle. Just like human blind walking, the robot foot tries different locations before it steps on somewhere. The gait also detects if the robot is facing a ditch too deep to step or an obstacle is too high to step on. The gait is implemented in the real-time control system. Experiments are carried out to validate the proposed gait. The robot walked through the uneven ground with maximum obstacle height of 0.2m successfully. The proposed gait enables the robot without foot tip force sensors to walk through the field with obstacles. © Springer Science+Business Media Dordrecht 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
1 |
title_short |
Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor |
url |
https://doi.org/10.1007/s10846-017-0532-7 |
remote_bool |
false |
author2 |
Gao, Feng Pan, Yang Chai, Xun |
author2Str |
Gao, Feng Pan, Yang Chai, Xun |
ppnlink |
130464864 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10846-017-0532-7 |
up_date |
2024-07-03T14:10:59.193Z |
_version_ |
1803567349576499200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057183920</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503120009.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10846-017-0532-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057183920</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10846-017-0532-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Yilin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hexapod Adaptive Gait Inspired by Human Behavior for Six-Legged Robot Without Force Sensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Legged robots are usually installed with force sensors in order to negotiate with the uneven ground. To eliminate the risk of force sensor failure, adaptive gaits integrating indirect force-estimation are of great importance. Robot Octopus III is a robot designed for carrying a payload in the harsh environment. There is no electric device installed on the lower limb of the robot. The indirect force-estimation method, which is based on its spatial parallel mechanism leg, can estimate the external force exerted on the foot tip. In this paper, an adaptive gait is designed after observing human actions. Experiments are carried out to observe how a human walks through the uneven ground when his/her eyes are covered. A static tripod gait mimics the human behavior during the blind walking. When the foot collides with the obstacle, the robot will adjust the foot’s height and try to overcome the obstacle. Just like human blind walking, the robot foot tries different locations before it steps on somewhere. The gait also detects if the robot is facing a ditch too deep to step or an obstacle is too high to step on. The gait is implemented in the real-time control system. Experiments are carried out to validate the proposed gait. The robot walked through the uneven ground with maximum obstacle height of 0.2m successfully. The proposed gait enables the robot without foot tip force sensors to walk through the field with obstacles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hexapod</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive gait</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blind walking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bio-inspired</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Feng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chai, Xun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent & robotic systems</subfield><subfield code="d">Springer Netherlands, 1988</subfield><subfield code="g">88(2017), 1 vom: 02. Apr., Seite 19-35</subfield><subfield code="w">(DE-627)130464864</subfield><subfield code="w">(DE-600)740594-7</subfield><subfield code="w">(DE-576)018667805</subfield><subfield code="x">0921-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:19-35</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10846-017-0532-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">04</subfield><subfield code="h">19-35</subfield></datafield></record></collection>
|
score |
7.4016743 |