Stereo and controlled movement
Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplyi...
Ausführliche Beschreibung
Autor*in: |
Yuille, Alan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1990 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kluwer Academic Publishers 1990 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of computer vision - Kluwer Academic Publishers, 1987, 4(1990), 2 vom: März, Seite 141-152 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:1990 ; number:2 ; month:03 ; pages:141-152 |
Links: |
---|
DOI / URN: |
10.1007/BF00127814 |
---|
Katalog-ID: |
OLC2057732738 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2057732738 | ||
003 | DE-627 | ||
005 | 20230504072015.0 | ||
007 | tu | ||
008 | 200819s1990 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00127814 |2 doi | |
035 | |a (DE-627)OLC2057732738 | ||
035 | |a (DE-He213)BF00127814-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Yuille, Alan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stereo and controlled movement |
264 | 1 | |c 1990 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 1990 | ||
520 | |a Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplying monocular cues. Because the movements are small, traditional methods of stereo with multiple frame will not work. We develop an alternative approach using a systematic analysis to define a probability distribution for the errors. Our matching strategy then matches the most probable points first (based on the monocular cues), thereby reducing the ambiguity for the remaining matches. We demonstrate this algorithm in detail for the cases of head and eye rotation and illustrate it with some examples. | ||
650 | 4 | |a Probability Distribution | |
650 | 4 | |a Image Processing | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Computer Vision | |
650 | 4 | |a Traditional Method | |
700 | 1 | |a Geiger, Davi |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of computer vision |d Kluwer Academic Publishers, 1987 |g 4(1990), 2 vom: März, Seite 141-152 |w (DE-627)129354252 |w (DE-600)155895-X |w (DE-576)018081428 |x 0920-5691 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:1990 |g number:2 |g month:03 |g pages:141-152 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00127814 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 1990 |e 2 |c 03 |h 141-152 |
author_variant |
a y ay d g dg |
---|---|
matchkey_str |
article:09205691:1990----::troncnrle |
hierarchy_sort_str |
1990 |
publishDate |
1990 |
allfields |
10.1007/BF00127814 doi (DE-627)OLC2057732738 (DE-He213)BF00127814-p DE-627 ger DE-627 rakwb eng 004 VZ Yuille, Alan verfasserin aut Stereo and controlled movement 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1990 Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplying monocular cues. Because the movements are small, traditional methods of stereo with multiple frame will not work. We develop an alternative approach using a systematic analysis to define a probability distribution for the errors. Our matching strategy then matches the most probable points first (based on the monocular cues), thereby reducing the ambiguity for the remaining matches. We demonstrate this algorithm in detail for the cases of head and eye rotation and illustrate it with some examples. Probability Distribution Image Processing Artificial Intelligence Computer Vision Traditional Method Geiger, Davi aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 4(1990), 2 vom: März, Seite 141-152 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:4 year:1990 number:2 month:03 pages:141-152 https://doi.org/10.1007/BF00127814 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4700 AR 4 1990 2 03 141-152 |
spelling |
10.1007/BF00127814 doi (DE-627)OLC2057732738 (DE-He213)BF00127814-p DE-627 ger DE-627 rakwb eng 004 VZ Yuille, Alan verfasserin aut Stereo and controlled movement 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1990 Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplying monocular cues. Because the movements are small, traditional methods of stereo with multiple frame will not work. We develop an alternative approach using a systematic analysis to define a probability distribution for the errors. Our matching strategy then matches the most probable points first (based on the monocular cues), thereby reducing the ambiguity for the remaining matches. We demonstrate this algorithm in detail for the cases of head and eye rotation and illustrate it with some examples. Probability Distribution Image Processing Artificial Intelligence Computer Vision Traditional Method Geiger, Davi aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 4(1990), 2 vom: März, Seite 141-152 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:4 year:1990 number:2 month:03 pages:141-152 https://doi.org/10.1007/BF00127814 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4700 AR 4 1990 2 03 141-152 |
allfields_unstemmed |
10.1007/BF00127814 doi (DE-627)OLC2057732738 (DE-He213)BF00127814-p DE-627 ger DE-627 rakwb eng 004 VZ Yuille, Alan verfasserin aut Stereo and controlled movement 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1990 Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplying monocular cues. Because the movements are small, traditional methods of stereo with multiple frame will not work. We develop an alternative approach using a systematic analysis to define a probability distribution for the errors. Our matching strategy then matches the most probable points first (based on the monocular cues), thereby reducing the ambiguity for the remaining matches. We demonstrate this algorithm in detail for the cases of head and eye rotation and illustrate it with some examples. Probability Distribution Image Processing Artificial Intelligence Computer Vision Traditional Method Geiger, Davi aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 4(1990), 2 vom: März, Seite 141-152 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:4 year:1990 number:2 month:03 pages:141-152 https://doi.org/10.1007/BF00127814 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4700 AR 4 1990 2 03 141-152 |
allfieldsGer |
10.1007/BF00127814 doi (DE-627)OLC2057732738 (DE-He213)BF00127814-p DE-627 ger DE-627 rakwb eng 004 VZ Yuille, Alan verfasserin aut Stereo and controlled movement 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1990 Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplying monocular cues. Because the movements are small, traditional methods of stereo with multiple frame will not work. We develop an alternative approach using a systematic analysis to define a probability distribution for the errors. Our matching strategy then matches the most probable points first (based on the monocular cues), thereby reducing the ambiguity for the remaining matches. We demonstrate this algorithm in detail for the cases of head and eye rotation and illustrate it with some examples. Probability Distribution Image Processing Artificial Intelligence Computer Vision Traditional Method Geiger, Davi aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 4(1990), 2 vom: März, Seite 141-152 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:4 year:1990 number:2 month:03 pages:141-152 https://doi.org/10.1007/BF00127814 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4700 AR 4 1990 2 03 141-152 |
allfieldsSound |
10.1007/BF00127814 doi (DE-627)OLC2057732738 (DE-He213)BF00127814-p DE-627 ger DE-627 rakwb eng 004 VZ Yuille, Alan verfasserin aut Stereo and controlled movement 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1990 Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplying monocular cues. Because the movements are small, traditional methods of stereo with multiple frame will not work. We develop an alternative approach using a systematic analysis to define a probability distribution for the errors. Our matching strategy then matches the most probable points first (based on the monocular cues), thereby reducing the ambiguity for the remaining matches. We demonstrate this algorithm in detail for the cases of head and eye rotation and illustrate it with some examples. Probability Distribution Image Processing Artificial Intelligence Computer Vision Traditional Method Geiger, Davi aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 4(1990), 2 vom: März, Seite 141-152 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:4 year:1990 number:2 month:03 pages:141-152 https://doi.org/10.1007/BF00127814 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4700 AR 4 1990 2 03 141-152 |
language |
English |
source |
Enthalten in International journal of computer vision 4(1990), 2 vom: März, Seite 141-152 volume:4 year:1990 number:2 month:03 pages:141-152 |
sourceStr |
Enthalten in International journal of computer vision 4(1990), 2 vom: März, Seite 141-152 volume:4 year:1990 number:2 month:03 pages:141-152 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Probability Distribution Image Processing Artificial Intelligence Computer Vision Traditional Method |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
International journal of computer vision |
authorswithroles_txt_mv |
Yuille, Alan @@aut@@ Geiger, Davi @@aut@@ |
publishDateDaySort_date |
1990-03-01T00:00:00Z |
hierarchy_top_id |
129354252 |
dewey-sort |
14 |
id |
OLC2057732738 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057732738</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072015.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1990 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00127814</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057732738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00127814-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yuille, Alan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stereo and controlled movement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1990</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1990</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplying monocular cues. Because the movements are small, traditional methods of stereo with multiple frame will not work. We develop an alternative approach using a systematic analysis to define a probability distribution for the errors. Our matching strategy then matches the most probable points first (based on the monocular cues), thereby reducing the ambiguity for the remaining matches. We demonstrate this algorithm in detail for the cases of head and eye rotation and illustrate it with some examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traditional Method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geiger, Davi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computer vision</subfield><subfield code="d">Kluwer Academic Publishers, 1987</subfield><subfield code="g">4(1990), 2 vom: März, Seite 141-152</subfield><subfield code="w">(DE-627)129354252</subfield><subfield code="w">(DE-600)155895-X</subfield><subfield code="w">(DE-576)018081428</subfield><subfield code="x">0920-5691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:1990</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:141-152</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00127814</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">1990</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">141-152</subfield></datafield></record></collection>
|
author |
Yuille, Alan |
spellingShingle |
Yuille, Alan ddc 004 misc Probability Distribution misc Image Processing misc Artificial Intelligence misc Computer Vision misc Traditional Method Stereo and controlled movement |
authorStr |
Yuille, Alan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129354252 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0920-5691 |
topic_title |
004 VZ Stereo and controlled movement Probability Distribution Image Processing Artificial Intelligence Computer Vision Traditional Method |
topic |
ddc 004 misc Probability Distribution misc Image Processing misc Artificial Intelligence misc Computer Vision misc Traditional Method |
topic_unstemmed |
ddc 004 misc Probability Distribution misc Image Processing misc Artificial Intelligence misc Computer Vision misc Traditional Method |
topic_browse |
ddc 004 misc Probability Distribution misc Image Processing misc Artificial Intelligence misc Computer Vision misc Traditional Method |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of computer vision |
hierarchy_parent_id |
129354252 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
International journal of computer vision |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129354252 (DE-600)155895-X (DE-576)018081428 |
title |
Stereo and controlled movement |
ctrlnum |
(DE-627)OLC2057732738 (DE-He213)BF00127814-p |
title_full |
Stereo and controlled movement |
author_sort |
Yuille, Alan |
journal |
International journal of computer vision |
journalStr |
International journal of computer vision |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
1990 |
contenttype_str_mv |
txt |
container_start_page |
141 |
author_browse |
Yuille, Alan Geiger, Davi |
container_volume |
4 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Yuille, Alan |
doi_str_mv |
10.1007/BF00127814 |
dewey-full |
004 |
title_sort |
stereo and controlled movement |
title_auth |
Stereo and controlled movement |
abstract |
Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplying monocular cues. Because the movements are small, traditional methods of stereo with multiple frame will not work. We develop an alternative approach using a systematic analysis to define a probability distribution for the errors. Our matching strategy then matches the most probable points first (based on the monocular cues), thereby reducing the ambiguity for the remaining matches. We demonstrate this algorithm in detail for the cases of head and eye rotation and illustrate it with some examples. © Kluwer Academic Publishers 1990 |
abstractGer |
Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplying monocular cues. Because the movements are small, traditional methods of stereo with multiple frame will not work. We develop an alternative approach using a systematic analysis to define a probability distribution for the errors. Our matching strategy then matches the most probable points first (based on the monocular cues), thereby reducing the ambiguity for the remaining matches. We demonstrate this algorithm in detail for the cases of head and eye rotation and illustrate it with some examples. © Kluwer Academic Publishers 1990 |
abstract_unstemmed |
Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplying monocular cues. Because the movements are small, traditional methods of stereo with multiple frame will not work. We develop an alternative approach using a systematic analysis to define a probability distribution for the errors. Our matching strategy then matches the most probable points first (based on the monocular cues), thereby reducing the ambiguity for the remaining matches. We demonstrate this algorithm in detail for the cases of head and eye rotation and illustrate it with some examples. © Kluwer Academic Publishers 1990 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2190 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Stereo and controlled movement |
url |
https://doi.org/10.1007/BF00127814 |
remote_bool |
false |
author2 |
Geiger, Davi |
author2Str |
Geiger, Davi |
ppnlink |
129354252 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00127814 |
up_date |
2024-07-03T16:05:20.907Z |
_version_ |
1803574544599875584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057732738</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072015.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1990 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00127814</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057732738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00127814-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yuille, Alan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stereo and controlled movement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1990</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1990</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We describe a method to solve the stereo correspondence using controlled head (or camera) movements. These movements, which can be due to eye rotation, head rotation, or head translation, essentially supply additional imageframes which can be used to constrain the stereo matching by supplying monocular cues. Because the movements are small, traditional methods of stereo with multiple frame will not work. We develop an alternative approach using a systematic analysis to define a probability distribution for the errors. Our matching strategy then matches the most probable points first (based on the monocular cues), thereby reducing the ambiguity for the remaining matches. We demonstrate this algorithm in detail for the cases of head and eye rotation and illustrate it with some examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traditional Method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geiger, Davi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computer vision</subfield><subfield code="d">Kluwer Academic Publishers, 1987</subfield><subfield code="g">4(1990), 2 vom: März, Seite 141-152</subfield><subfield code="w">(DE-627)129354252</subfield><subfield code="w">(DE-600)155895-X</subfield><subfield code="w">(DE-576)018081428</subfield><subfield code="x">0920-5691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:1990</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:141-152</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00127814</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">1990</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">141-152</subfield></datafield></record></collection>
|
score |
7.4015303 |