Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods
Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and i...
Ausführliche Beschreibung
Autor*in: |
Bruhn, Andrés [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Anmerkung: |
© Kluwer Academic Publishers 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of computer vision - Kluwer Academic Publishers, 1987, 61(2005), 3 vom: Feb., Seite 211-231 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2005 ; number:3 ; month:02 ; pages:211-231 |
Links: |
---|
DOI / URN: |
10.1023/B:VISI.0000045324.43199.43 |
---|
Katalog-ID: |
OLC205774003X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205774003X | ||
003 | DE-627 | ||
005 | 20230504072042.0 | ||
007 | tu | ||
008 | 200819s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/B:VISI.0000045324.43199.43 |2 doi | |
035 | |a (DE-627)OLC205774003X | ||
035 | |a (DE-He213)B:VISI.0000045324.43199.43-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Bruhn, Andrés |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 2005 | ||
520 | |a Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways; (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure. | ||
700 | 1 | |a Weickert, Joachim |4 aut | |
700 | 1 | |a Schnörr, Christoph |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of computer vision |d Kluwer Academic Publishers, 1987 |g 61(2005), 3 vom: Feb., Seite 211-231 |w (DE-627)129354252 |w (DE-600)155895-X |w (DE-576)018081428 |x 0920-5691 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2005 |g number:3 |g month:02 |g pages:211-231 |
856 | 4 | 1 | |u https://doi.org/10.1023/B:VISI.0000045324.43199.43 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 61 |j 2005 |e 3 |c 02 |h 211-231 |
author_variant |
a b ab j w jw c s cs |
---|---|
matchkey_str |
article:09205691:2005----::uakndmesoncuccmiigoaadlb |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1023/B:VISI.0000045324.43199.43 doi (DE-627)OLC205774003X (DE-He213)B:VISI.0000045324.43199.43-p DE-627 ger DE-627 rakwb eng 004 VZ Bruhn, Andrés verfasserin aut Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2005 Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways; (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure. Weickert, Joachim aut Schnörr, Christoph aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 61(2005), 3 vom: Feb., Seite 211-231 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:61 year:2005 number:3 month:02 pages:211-231 https://doi.org/10.1023/B:VISI.0000045324.43199.43 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 AR 61 2005 3 02 211-231 |
spelling |
10.1023/B:VISI.0000045324.43199.43 doi (DE-627)OLC205774003X (DE-He213)B:VISI.0000045324.43199.43-p DE-627 ger DE-627 rakwb eng 004 VZ Bruhn, Andrés verfasserin aut Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2005 Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways; (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure. Weickert, Joachim aut Schnörr, Christoph aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 61(2005), 3 vom: Feb., Seite 211-231 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:61 year:2005 number:3 month:02 pages:211-231 https://doi.org/10.1023/B:VISI.0000045324.43199.43 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 AR 61 2005 3 02 211-231 |
allfields_unstemmed |
10.1023/B:VISI.0000045324.43199.43 doi (DE-627)OLC205774003X (DE-He213)B:VISI.0000045324.43199.43-p DE-627 ger DE-627 rakwb eng 004 VZ Bruhn, Andrés verfasserin aut Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2005 Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways; (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure. Weickert, Joachim aut Schnörr, Christoph aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 61(2005), 3 vom: Feb., Seite 211-231 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:61 year:2005 number:3 month:02 pages:211-231 https://doi.org/10.1023/B:VISI.0000045324.43199.43 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 AR 61 2005 3 02 211-231 |
allfieldsGer |
10.1023/B:VISI.0000045324.43199.43 doi (DE-627)OLC205774003X (DE-He213)B:VISI.0000045324.43199.43-p DE-627 ger DE-627 rakwb eng 004 VZ Bruhn, Andrés verfasserin aut Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2005 Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways; (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure. Weickert, Joachim aut Schnörr, Christoph aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 61(2005), 3 vom: Feb., Seite 211-231 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:61 year:2005 number:3 month:02 pages:211-231 https://doi.org/10.1023/B:VISI.0000045324.43199.43 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 AR 61 2005 3 02 211-231 |
allfieldsSound |
10.1023/B:VISI.0000045324.43199.43 doi (DE-627)OLC205774003X (DE-He213)B:VISI.0000045324.43199.43-p DE-627 ger DE-627 rakwb eng 004 VZ Bruhn, Andrés verfasserin aut Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2005 Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways; (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure. Weickert, Joachim aut Schnörr, Christoph aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 61(2005), 3 vom: Feb., Seite 211-231 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:61 year:2005 number:3 month:02 pages:211-231 https://doi.org/10.1023/B:VISI.0000045324.43199.43 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 AR 61 2005 3 02 211-231 |
language |
English |
source |
Enthalten in International journal of computer vision 61(2005), 3 vom: Feb., Seite 211-231 volume:61 year:2005 number:3 month:02 pages:211-231 |
sourceStr |
Enthalten in International journal of computer vision 61(2005), 3 vom: Feb., Seite 211-231 volume:61 year:2005 number:3 month:02 pages:211-231 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
International journal of computer vision |
authorswithroles_txt_mv |
Bruhn, Andrés @@aut@@ Weickert, Joachim @@aut@@ Schnörr, Christoph @@aut@@ |
publishDateDaySort_date |
2005-02-01T00:00:00Z |
hierarchy_top_id |
129354252 |
dewey-sort |
14 |
id |
OLC205774003X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205774003X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072042.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/B:VISI.0000045324.43199.43</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205774003X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)B:VISI.0000045324.43199.43-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bruhn, Andrés</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways; (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weickert, Joachim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schnörr, Christoph</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computer vision</subfield><subfield code="d">Kluwer Academic Publishers, 1987</subfield><subfield code="g">61(2005), 3 vom: Feb., Seite 211-231</subfield><subfield code="w">(DE-627)129354252</subfield><subfield code="w">(DE-600)155895-X</subfield><subfield code="w">(DE-576)018081428</subfield><subfield code="x">0920-5691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:3</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:211-231</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/B:VISI.0000045324.43199.43</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2005</subfield><subfield code="e">3</subfield><subfield code="c">02</subfield><subfield code="h">211-231</subfield></datafield></record></collection>
|
author |
Bruhn, Andrés |
spellingShingle |
Bruhn, Andrés ddc 004 Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods |
authorStr |
Bruhn, Andrés |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129354252 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0920-5691 |
topic_title |
004 VZ Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods |
topic |
ddc 004 |
topic_unstemmed |
ddc 004 |
topic_browse |
ddc 004 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of computer vision |
hierarchy_parent_id |
129354252 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
International journal of computer vision |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129354252 (DE-600)155895-X (DE-576)018081428 |
title |
Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods |
ctrlnum |
(DE-627)OLC205774003X (DE-He213)B:VISI.0000045324.43199.43-p |
title_full |
Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods |
author_sort |
Bruhn, Andrés |
journal |
International journal of computer vision |
journalStr |
International journal of computer vision |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
211 |
author_browse |
Bruhn, Andrés Weickert, Joachim Schnörr, Christoph |
container_volume |
61 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Bruhn, Andrés |
doi_str_mv |
10.1023/B:VISI.0000045324.43199.43 |
dewey-full |
004 |
title_sort |
lucas/kanade meets horn/schunck: combining local and global optic flow methods |
title_auth |
Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods |
abstract |
Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways; (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure. © Kluwer Academic Publishers 2005 |
abstractGer |
Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways; (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure. © Kluwer Academic Publishers 2005 |
abstract_unstemmed |
Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways; (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure. © Kluwer Academic Publishers 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods |
url |
https://doi.org/10.1023/B:VISI.0000045324.43199.43 |
remote_bool |
false |
author2 |
Weickert, Joachim Schnörr, Christoph |
author2Str |
Weickert, Joachim Schnörr, Christoph |
ppnlink |
129354252 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/B:VISI.0000045324.43199.43 |
up_date |
2024-07-03T16:07:00.353Z |
_version_ |
1803574648874467328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205774003X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072042.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/B:VISI.0000045324.43199.43</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205774003X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)B:VISI.0000045324.43199.43-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bruhn, Andrés</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways; (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weickert, Joachim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schnörr, Christoph</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computer vision</subfield><subfield code="d">Kluwer Academic Publishers, 1987</subfield><subfield code="g">61(2005), 3 vom: Feb., Seite 211-231</subfield><subfield code="w">(DE-627)129354252</subfield><subfield code="w">(DE-600)155895-X</subfield><subfield code="w">(DE-576)018081428</subfield><subfield code="x">0920-5691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:3</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:211-231</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/B:VISI.0000045324.43199.43</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2005</subfield><subfield code="e">3</subfield><subfield code="c">02</subfield><subfield code="h">211-231</subfield></datafield></record></collection>
|
score |
7.4023743 |