A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods
Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such ada...
Ausführliche Beschreibung
Autor*in: |
Bruhn, Andrés [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science + Business Media, LLC 2006 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of computer vision - Kluwer Academic Publishers, 1987, 70(2006), 3 vom: Dez., Seite 257-277 |
---|---|
Übergeordnetes Werk: |
volume:70 ; year:2006 ; number:3 ; month:12 ; pages:257-277 |
Links: |
---|
DOI / URN: |
10.1007/s11263-006-6616-7 |
---|
Katalog-ID: |
OLC2057741516 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2057741516 | ||
003 | DE-627 | ||
005 | 20230504072049.0 | ||
007 | tu | ||
008 | 200819s2006 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11263-006-6616-7 |2 doi | |
035 | |a (DE-627)OLC2057741516 | ||
035 | |a (DE-He213)s11263-006-6616-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Bruhn, Andrés |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science + Business Media, LLC 2006 | ||
520 | |a Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that real-time performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude. | ||
650 | 4 | |a partial differential equations | |
650 | 4 | |a variational methods | |
650 | 4 | |a optic flow | |
650 | 4 | |a multigrid methods | |
700 | 1 | |a Weickert, Joachim |4 aut | |
700 | 1 | |a Kohlberger, Timo |4 aut | |
700 | 1 | |a Schnörr, Christoph |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of computer vision |d Kluwer Academic Publishers, 1987 |g 70(2006), 3 vom: Dez., Seite 257-277 |w (DE-627)129354252 |w (DE-600)155895-X |w (DE-576)018081428 |x 0920-5691 |7 nnns |
773 | 1 | 8 | |g volume:70 |g year:2006 |g number:3 |g month:12 |g pages:257-277 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11263-006-6616-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 70 |j 2006 |e 3 |c 12 |h 257-277 |
author_variant |
a b ab j w jw t k tk c s cs |
---|---|
matchkey_str |
article:09205691:2006----::mlirdltomoratmmtocmuainihicniutpe |
hierarchy_sort_str |
2006 |
publishDate |
2006 |
allfields |
10.1007/s11263-006-6616-7 doi (DE-627)OLC2057741516 (DE-He213)s11263-006-6616-7-p DE-627 ger DE-627 rakwb eng 004 VZ Bruhn, Andrés verfasserin aut A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media, LLC 2006 Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that real-time performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude. partial differential equations variational methods optic flow multigrid methods Weickert, Joachim aut Kohlberger, Timo aut Schnörr, Christoph aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 70(2006), 3 vom: Dez., Seite 257-277 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:70 year:2006 number:3 month:12 pages:257-277 https://doi.org/10.1007/s11263-006-6616-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 AR 70 2006 3 12 257-277 |
spelling |
10.1007/s11263-006-6616-7 doi (DE-627)OLC2057741516 (DE-He213)s11263-006-6616-7-p DE-627 ger DE-627 rakwb eng 004 VZ Bruhn, Andrés verfasserin aut A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media, LLC 2006 Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that real-time performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude. partial differential equations variational methods optic flow multigrid methods Weickert, Joachim aut Kohlberger, Timo aut Schnörr, Christoph aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 70(2006), 3 vom: Dez., Seite 257-277 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:70 year:2006 number:3 month:12 pages:257-277 https://doi.org/10.1007/s11263-006-6616-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 AR 70 2006 3 12 257-277 |
allfields_unstemmed |
10.1007/s11263-006-6616-7 doi (DE-627)OLC2057741516 (DE-He213)s11263-006-6616-7-p DE-627 ger DE-627 rakwb eng 004 VZ Bruhn, Andrés verfasserin aut A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media, LLC 2006 Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that real-time performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude. partial differential equations variational methods optic flow multigrid methods Weickert, Joachim aut Kohlberger, Timo aut Schnörr, Christoph aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 70(2006), 3 vom: Dez., Seite 257-277 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:70 year:2006 number:3 month:12 pages:257-277 https://doi.org/10.1007/s11263-006-6616-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 AR 70 2006 3 12 257-277 |
allfieldsGer |
10.1007/s11263-006-6616-7 doi (DE-627)OLC2057741516 (DE-He213)s11263-006-6616-7-p DE-627 ger DE-627 rakwb eng 004 VZ Bruhn, Andrés verfasserin aut A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media, LLC 2006 Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that real-time performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude. partial differential equations variational methods optic flow multigrid methods Weickert, Joachim aut Kohlberger, Timo aut Schnörr, Christoph aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 70(2006), 3 vom: Dez., Seite 257-277 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:70 year:2006 number:3 month:12 pages:257-277 https://doi.org/10.1007/s11263-006-6616-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 AR 70 2006 3 12 257-277 |
allfieldsSound |
10.1007/s11263-006-6616-7 doi (DE-627)OLC2057741516 (DE-He213)s11263-006-6616-7-p DE-627 ger DE-627 rakwb eng 004 VZ Bruhn, Andrés verfasserin aut A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media, LLC 2006 Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that real-time performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude. partial differential equations variational methods optic flow multigrid methods Weickert, Joachim aut Kohlberger, Timo aut Schnörr, Christoph aut Enthalten in International journal of computer vision Kluwer Academic Publishers, 1987 70(2006), 3 vom: Dez., Seite 257-277 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:70 year:2006 number:3 month:12 pages:257-277 https://doi.org/10.1007/s11263-006-6616-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 AR 70 2006 3 12 257-277 |
language |
English |
source |
Enthalten in International journal of computer vision 70(2006), 3 vom: Dez., Seite 257-277 volume:70 year:2006 number:3 month:12 pages:257-277 |
sourceStr |
Enthalten in International journal of computer vision 70(2006), 3 vom: Dez., Seite 257-277 volume:70 year:2006 number:3 month:12 pages:257-277 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
partial differential equations variational methods optic flow multigrid methods |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
International journal of computer vision |
authorswithroles_txt_mv |
Bruhn, Andrés @@aut@@ Weickert, Joachim @@aut@@ Kohlberger, Timo @@aut@@ Schnörr, Christoph @@aut@@ |
publishDateDaySort_date |
2006-12-01T00:00:00Z |
hierarchy_top_id |
129354252 |
dewey-sort |
14 |
id |
OLC2057741516 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057741516</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072049.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11263-006-6616-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057741516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11263-006-6616-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bruhn, Andrés</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science + Business Media, LLC 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that real-time performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variational methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optic flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multigrid methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weickert, Joachim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kohlberger, Timo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schnörr, Christoph</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computer vision</subfield><subfield code="d">Kluwer Academic Publishers, 1987</subfield><subfield code="g">70(2006), 3 vom: Dez., Seite 257-277</subfield><subfield code="w">(DE-627)129354252</subfield><subfield code="w">(DE-600)155895-X</subfield><subfield code="w">(DE-576)018081428</subfield><subfield code="x">0920-5691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:3</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:257-277</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11263-006-6616-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2006</subfield><subfield code="e">3</subfield><subfield code="c">12</subfield><subfield code="h">257-277</subfield></datafield></record></collection>
|
author |
Bruhn, Andrés |
spellingShingle |
Bruhn, Andrés ddc 004 misc partial differential equations misc variational methods misc optic flow misc multigrid methods A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods |
authorStr |
Bruhn, Andrés |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129354252 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0920-5691 |
topic_title |
004 VZ A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods partial differential equations variational methods optic flow multigrid methods |
topic |
ddc 004 misc partial differential equations misc variational methods misc optic flow misc multigrid methods |
topic_unstemmed |
ddc 004 misc partial differential equations misc variational methods misc optic flow misc multigrid methods |
topic_browse |
ddc 004 misc partial differential equations misc variational methods misc optic flow misc multigrid methods |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of computer vision |
hierarchy_parent_id |
129354252 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
International journal of computer vision |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129354252 (DE-600)155895-X (DE-576)018081428 |
title |
A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods |
ctrlnum |
(DE-627)OLC2057741516 (DE-He213)s11263-006-6616-7-p |
title_full |
A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods |
author_sort |
Bruhn, Andrés |
journal |
International journal of computer vision |
journalStr |
International journal of computer vision |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
257 |
author_browse |
Bruhn, Andrés Weickert, Joachim Kohlberger, Timo Schnörr, Christoph |
container_volume |
70 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Bruhn, Andrés |
doi_str_mv |
10.1007/s11263-006-6616-7 |
dewey-full |
004 |
title_sort |
a multigrid platform for real-time motion computation with discontinuity-preserving variational methods |
title_auth |
A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods |
abstract |
Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that real-time performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude. © Springer Science + Business Media, LLC 2006 |
abstractGer |
Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that real-time performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude. © Springer Science + Business Media, LLC 2006 |
abstract_unstemmed |
Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that real-time performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude. © Springer Science + Business Media, LLC 2006 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4700 |
container_issue |
3 |
title_short |
A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods |
url |
https://doi.org/10.1007/s11263-006-6616-7 |
remote_bool |
false |
author2 |
Weickert, Joachim Kohlberger, Timo Schnörr, Christoph |
author2Str |
Weickert, Joachim Kohlberger, Timo Schnörr, Christoph |
ppnlink |
129354252 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11263-006-6616-7 |
up_date |
2024-07-03T16:07:22.133Z |
_version_ |
1803574671712452608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057741516</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072049.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11263-006-6616-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057741516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11263-006-6616-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bruhn, Andrés</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science + Business Media, LLC 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that real-time performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variational methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optic flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multigrid methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weickert, Joachim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kohlberger, Timo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schnörr, Christoph</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computer vision</subfield><subfield code="d">Kluwer Academic Publishers, 1987</subfield><subfield code="g">70(2006), 3 vom: Dez., Seite 257-277</subfield><subfield code="w">(DE-627)129354252</subfield><subfield code="w">(DE-600)155895-X</subfield><subfield code="w">(DE-576)018081428</subfield><subfield code="x">0920-5691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:3</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:257-277</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11263-006-6616-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2006</subfield><subfield code="e">3</subfield><subfield code="c">12</subfield><subfield code="h">257-277</subfield></datafield></record></collection>
|
score |
7.401906 |