Optic Flow in Harmony
Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and var...
Ausführliche Beschreibung
Autor*in: |
Zimmer, Henning [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of computer vision - Springer US, 1987, 93(2011), 3 vom: 26. Jan., Seite 368-388 |
---|---|
Übergeordnetes Werk: |
volume:93 ; year:2011 ; number:3 ; day:26 ; month:01 ; pages:368-388 |
Links: |
---|
DOI / URN: |
10.1007/s11263-011-0422-6 |
---|
Katalog-ID: |
OLC2057745546 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2057745546 | ||
003 | DE-627 | ||
005 | 20230504072122.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11263-011-0422-6 |2 doi | |
035 | |a (DE-627)OLC2057745546 | ||
035 | |a (DE-He213)s11263-011-0422-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Zimmer, Henning |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optic Flow in Harmony |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2011 | ||
520 | |a Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark. | ||
650 | 4 | |a Optic flow | |
650 | 4 | |a Variational methods | |
650 | 4 | |a Anisotropic smoothing | |
650 | 4 | |a Robust penalisation | |
650 | 4 | |a Motion tensor | |
650 | 4 | |a Parameter selection | |
700 | 1 | |a Bruhn, Andrés |4 aut | |
700 | 1 | |a Weickert, Joachim |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of computer vision |d Springer US, 1987 |g 93(2011), 3 vom: 26. Jan., Seite 368-388 |w (DE-627)129354252 |w (DE-600)155895-X |w (DE-576)018081428 |x 0920-5691 |7 nnns |
773 | 1 | 8 | |g volume:93 |g year:2011 |g number:3 |g day:26 |g month:01 |g pages:368-388 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11263-011-0422-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 93 |j 2011 |e 3 |b 26 |c 01 |h 368-388 |
author_variant |
h z hz a b ab j w jw |
---|---|
matchkey_str |
article:09205691:2011----::pifoih |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s11263-011-0422-6 doi (DE-627)OLC2057745546 (DE-He213)s11263-011-0422-6-p DE-627 ger DE-627 rakwb eng 004 VZ Zimmer, Henning verfasserin aut Optic Flow in Harmony 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark. Optic flow Variational methods Anisotropic smoothing Robust penalisation Motion tensor Parameter selection Bruhn, Andrés aut Weickert, Joachim aut Enthalten in International journal of computer vision Springer US, 1987 93(2011), 3 vom: 26. Jan., Seite 368-388 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:93 year:2011 number:3 day:26 month:01 pages:368-388 https://doi.org/10.1007/s11263-011-0422-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 AR 93 2011 3 26 01 368-388 |
spelling |
10.1007/s11263-011-0422-6 doi (DE-627)OLC2057745546 (DE-He213)s11263-011-0422-6-p DE-627 ger DE-627 rakwb eng 004 VZ Zimmer, Henning verfasserin aut Optic Flow in Harmony 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark. Optic flow Variational methods Anisotropic smoothing Robust penalisation Motion tensor Parameter selection Bruhn, Andrés aut Weickert, Joachim aut Enthalten in International journal of computer vision Springer US, 1987 93(2011), 3 vom: 26. Jan., Seite 368-388 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:93 year:2011 number:3 day:26 month:01 pages:368-388 https://doi.org/10.1007/s11263-011-0422-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 AR 93 2011 3 26 01 368-388 |
allfields_unstemmed |
10.1007/s11263-011-0422-6 doi (DE-627)OLC2057745546 (DE-He213)s11263-011-0422-6-p DE-627 ger DE-627 rakwb eng 004 VZ Zimmer, Henning verfasserin aut Optic Flow in Harmony 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark. Optic flow Variational methods Anisotropic smoothing Robust penalisation Motion tensor Parameter selection Bruhn, Andrés aut Weickert, Joachim aut Enthalten in International journal of computer vision Springer US, 1987 93(2011), 3 vom: 26. Jan., Seite 368-388 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:93 year:2011 number:3 day:26 month:01 pages:368-388 https://doi.org/10.1007/s11263-011-0422-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 AR 93 2011 3 26 01 368-388 |
allfieldsGer |
10.1007/s11263-011-0422-6 doi (DE-627)OLC2057745546 (DE-He213)s11263-011-0422-6-p DE-627 ger DE-627 rakwb eng 004 VZ Zimmer, Henning verfasserin aut Optic Flow in Harmony 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark. Optic flow Variational methods Anisotropic smoothing Robust penalisation Motion tensor Parameter selection Bruhn, Andrés aut Weickert, Joachim aut Enthalten in International journal of computer vision Springer US, 1987 93(2011), 3 vom: 26. Jan., Seite 368-388 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:93 year:2011 number:3 day:26 month:01 pages:368-388 https://doi.org/10.1007/s11263-011-0422-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 AR 93 2011 3 26 01 368-388 |
allfieldsSound |
10.1007/s11263-011-0422-6 doi (DE-627)OLC2057745546 (DE-He213)s11263-011-0422-6-p DE-627 ger DE-627 rakwb eng 004 VZ Zimmer, Henning verfasserin aut Optic Flow in Harmony 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark. Optic flow Variational methods Anisotropic smoothing Robust penalisation Motion tensor Parameter selection Bruhn, Andrés aut Weickert, Joachim aut Enthalten in International journal of computer vision Springer US, 1987 93(2011), 3 vom: 26. Jan., Seite 368-388 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:93 year:2011 number:3 day:26 month:01 pages:368-388 https://doi.org/10.1007/s11263-011-0422-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 AR 93 2011 3 26 01 368-388 |
language |
English |
source |
Enthalten in International journal of computer vision 93(2011), 3 vom: 26. Jan., Seite 368-388 volume:93 year:2011 number:3 day:26 month:01 pages:368-388 |
sourceStr |
Enthalten in International journal of computer vision 93(2011), 3 vom: 26. Jan., Seite 368-388 volume:93 year:2011 number:3 day:26 month:01 pages:368-388 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Optic flow Variational methods Anisotropic smoothing Robust penalisation Motion tensor Parameter selection |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
International journal of computer vision |
authorswithroles_txt_mv |
Zimmer, Henning @@aut@@ Bruhn, Andrés @@aut@@ Weickert, Joachim @@aut@@ |
publishDateDaySort_date |
2011-01-26T00:00:00Z |
hierarchy_top_id |
129354252 |
dewey-sort |
14 |
id |
OLC2057745546 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057745546</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072122.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11263-011-0422-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057745546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11263-011-0422-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zimmer, Henning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optic Flow in Harmony</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optic flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variational methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropic smoothing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robust penalisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter selection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bruhn, Andrés</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weickert, Joachim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computer vision</subfield><subfield code="d">Springer US, 1987</subfield><subfield code="g">93(2011), 3 vom: 26. Jan., Seite 368-388</subfield><subfield code="w">(DE-627)129354252</subfield><subfield code="w">(DE-600)155895-X</subfield><subfield code="w">(DE-576)018081428</subfield><subfield code="x">0920-5691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:93</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:3</subfield><subfield code="g">day:26</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:368-388</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11263-011-0422-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">93</subfield><subfield code="j">2011</subfield><subfield code="e">3</subfield><subfield code="b">26</subfield><subfield code="c">01</subfield><subfield code="h">368-388</subfield></datafield></record></collection>
|
author |
Zimmer, Henning |
spellingShingle |
Zimmer, Henning ddc 004 misc Optic flow misc Variational methods misc Anisotropic smoothing misc Robust penalisation misc Motion tensor misc Parameter selection Optic Flow in Harmony |
authorStr |
Zimmer, Henning |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129354252 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0920-5691 |
topic_title |
004 VZ Optic Flow in Harmony Optic flow Variational methods Anisotropic smoothing Robust penalisation Motion tensor Parameter selection |
topic |
ddc 004 misc Optic flow misc Variational methods misc Anisotropic smoothing misc Robust penalisation misc Motion tensor misc Parameter selection |
topic_unstemmed |
ddc 004 misc Optic flow misc Variational methods misc Anisotropic smoothing misc Robust penalisation misc Motion tensor misc Parameter selection |
topic_browse |
ddc 004 misc Optic flow misc Variational methods misc Anisotropic smoothing misc Robust penalisation misc Motion tensor misc Parameter selection |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of computer vision |
hierarchy_parent_id |
129354252 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
International journal of computer vision |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129354252 (DE-600)155895-X (DE-576)018081428 |
title |
Optic Flow in Harmony |
ctrlnum |
(DE-627)OLC2057745546 (DE-He213)s11263-011-0422-6-p |
title_full |
Optic Flow in Harmony |
author_sort |
Zimmer, Henning |
journal |
International journal of computer vision |
journalStr |
International journal of computer vision |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
368 |
author_browse |
Zimmer, Henning Bruhn, Andrés Weickert, Joachim |
container_volume |
93 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Zimmer, Henning |
doi_str_mv |
10.1007/s11263-011-0422-6 |
dewey-full |
004 |
title_sort |
optic flow in harmony |
title_auth |
Optic Flow in Harmony |
abstract |
Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark. © Springer Science+Business Media, LLC 2011 |
abstractGer |
Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark. © Springer Science+Business Media, LLC 2011 |
abstract_unstemmed |
Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark. © Springer Science+Business Media, LLC 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Optic Flow in Harmony |
url |
https://doi.org/10.1007/s11263-011-0422-6 |
remote_bool |
false |
author2 |
Bruhn, Andrés Weickert, Joachim |
author2Str |
Bruhn, Andrés Weickert, Joachim |
ppnlink |
129354252 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11263-011-0422-6 |
up_date |
2024-07-03T16:08:22.875Z |
_version_ |
1803574735407153152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057745546</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072122.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11263-011-0422-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057745546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11263-011-0422-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zimmer, Henning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optic Flow in Harmony</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optic flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variational methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropic smoothing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robust penalisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter selection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bruhn, Andrés</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weickert, Joachim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computer vision</subfield><subfield code="d">Springer US, 1987</subfield><subfield code="g">93(2011), 3 vom: 26. Jan., Seite 368-388</subfield><subfield code="w">(DE-627)129354252</subfield><subfield code="w">(DE-600)155895-X</subfield><subfield code="w">(DE-576)018081428</subfield><subfield code="x">0920-5691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:93</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:3</subfield><subfield code="g">day:26</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:368-388</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11263-011-0422-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">93</subfield><subfield code="j">2011</subfield><subfield code="e">3</subfield><subfield code="b">26</subfield><subfield code="c">01</subfield><subfield code="h">368-388</subfield></datafield></record></collection>
|
score |
7.4017506 |