Graph Matching by Simplified Convex-Concave Relaxation Procedure
Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practica...
Ausführliche Beschreibung
Autor*in: |
Liu, Zhi-Yong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of computer vision - Springer US, 1987, 109(2014), 3 vom: 22. März, Seite 169-186 |
---|---|
Übergeordnetes Werk: |
volume:109 ; year:2014 ; number:3 ; day:22 ; month:03 ; pages:169-186 |
Links: |
---|
DOI / URN: |
10.1007/s11263-014-0707-7 |
---|
Katalog-ID: |
OLC2057748545 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2057748545 | ||
003 | DE-627 | ||
005 | 20230504072151.0 | ||
007 | tu | ||
008 | 200819s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11263-014-0707-7 |2 doi | |
035 | |a (DE-627)OLC2057748545 | ||
035 | |a (DE-He213)s11263-014-0707-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Liu, Zhi-Yong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Graph Matching by Simplified Convex-Concave Relaxation Procedure |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2014 | ||
520 | |a Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms. | ||
650 | 4 | |a Graph matching | |
650 | 4 | |a Combinatorial optimization | |
650 | 4 | |a Deterministic annealing | |
650 | 4 | |a Graduated optimization | |
650 | 4 | |a Feature correspondence | |
700 | 1 | |a Qiao, Hong |4 aut | |
700 | 1 | |a Yang, Xu |4 aut | |
700 | 1 | |a Hoi, Steven C. H. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of computer vision |d Springer US, 1987 |g 109(2014), 3 vom: 22. März, Seite 169-186 |w (DE-627)129354252 |w (DE-600)155895-X |w (DE-576)018081428 |x 0920-5691 |7 nnns |
773 | 1 | 8 | |g volume:109 |g year:2014 |g number:3 |g day:22 |g month:03 |g pages:169-186 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11263-014-0707-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 109 |j 2014 |e 3 |b 22 |c 03 |h 169-186 |
author_variant |
z y l zyl h q hq x y xy s c h h sch schh |
---|---|
matchkey_str |
article:09205691:2014----::rpmthnbsmlfecnecnaeea |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s11263-014-0707-7 doi (DE-627)OLC2057748545 (DE-He213)s11263-014-0707-7-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Zhi-Yong verfasserin aut Graph Matching by Simplified Convex-Concave Relaxation Procedure 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms. Graph matching Combinatorial optimization Deterministic annealing Graduated optimization Feature correspondence Qiao, Hong aut Yang, Xu aut Hoi, Steven C. H. aut Enthalten in International journal of computer vision Springer US, 1987 109(2014), 3 vom: 22. März, Seite 169-186 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:109 year:2014 number:3 day:22 month:03 pages:169-186 https://doi.org/10.1007/s11263-014-0707-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 AR 109 2014 3 22 03 169-186 |
spelling |
10.1007/s11263-014-0707-7 doi (DE-627)OLC2057748545 (DE-He213)s11263-014-0707-7-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Zhi-Yong verfasserin aut Graph Matching by Simplified Convex-Concave Relaxation Procedure 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms. Graph matching Combinatorial optimization Deterministic annealing Graduated optimization Feature correspondence Qiao, Hong aut Yang, Xu aut Hoi, Steven C. H. aut Enthalten in International journal of computer vision Springer US, 1987 109(2014), 3 vom: 22. März, Seite 169-186 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:109 year:2014 number:3 day:22 month:03 pages:169-186 https://doi.org/10.1007/s11263-014-0707-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 AR 109 2014 3 22 03 169-186 |
allfields_unstemmed |
10.1007/s11263-014-0707-7 doi (DE-627)OLC2057748545 (DE-He213)s11263-014-0707-7-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Zhi-Yong verfasserin aut Graph Matching by Simplified Convex-Concave Relaxation Procedure 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms. Graph matching Combinatorial optimization Deterministic annealing Graduated optimization Feature correspondence Qiao, Hong aut Yang, Xu aut Hoi, Steven C. H. aut Enthalten in International journal of computer vision Springer US, 1987 109(2014), 3 vom: 22. März, Seite 169-186 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:109 year:2014 number:3 day:22 month:03 pages:169-186 https://doi.org/10.1007/s11263-014-0707-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 AR 109 2014 3 22 03 169-186 |
allfieldsGer |
10.1007/s11263-014-0707-7 doi (DE-627)OLC2057748545 (DE-He213)s11263-014-0707-7-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Zhi-Yong verfasserin aut Graph Matching by Simplified Convex-Concave Relaxation Procedure 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms. Graph matching Combinatorial optimization Deterministic annealing Graduated optimization Feature correspondence Qiao, Hong aut Yang, Xu aut Hoi, Steven C. H. aut Enthalten in International journal of computer vision Springer US, 1987 109(2014), 3 vom: 22. März, Seite 169-186 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:109 year:2014 number:3 day:22 month:03 pages:169-186 https://doi.org/10.1007/s11263-014-0707-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 AR 109 2014 3 22 03 169-186 |
allfieldsSound |
10.1007/s11263-014-0707-7 doi (DE-627)OLC2057748545 (DE-He213)s11263-014-0707-7-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Zhi-Yong verfasserin aut Graph Matching by Simplified Convex-Concave Relaxation Procedure 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms. Graph matching Combinatorial optimization Deterministic annealing Graduated optimization Feature correspondence Qiao, Hong aut Yang, Xu aut Hoi, Steven C. H. aut Enthalten in International journal of computer vision Springer US, 1987 109(2014), 3 vom: 22. März, Seite 169-186 (DE-627)129354252 (DE-600)155895-X (DE-576)018081428 0920-5691 nnns volume:109 year:2014 number:3 day:22 month:03 pages:169-186 https://doi.org/10.1007/s11263-014-0707-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 AR 109 2014 3 22 03 169-186 |
language |
English |
source |
Enthalten in International journal of computer vision 109(2014), 3 vom: 22. März, Seite 169-186 volume:109 year:2014 number:3 day:22 month:03 pages:169-186 |
sourceStr |
Enthalten in International journal of computer vision 109(2014), 3 vom: 22. März, Seite 169-186 volume:109 year:2014 number:3 day:22 month:03 pages:169-186 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Graph matching Combinatorial optimization Deterministic annealing Graduated optimization Feature correspondence |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
International journal of computer vision |
authorswithroles_txt_mv |
Liu, Zhi-Yong @@aut@@ Qiao, Hong @@aut@@ Yang, Xu @@aut@@ Hoi, Steven C. H. @@aut@@ |
publishDateDaySort_date |
2014-03-22T00:00:00Z |
hierarchy_top_id |
129354252 |
dewey-sort |
14 |
id |
OLC2057748545 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057748545</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072151.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11263-014-0707-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057748545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11263-014-0707-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Zhi-Yong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graph Matching by Simplified Convex-Concave Relaxation Procedure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deterministic annealing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graduated optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature correspondence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Hong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoi, Steven C. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computer vision</subfield><subfield code="d">Springer US, 1987</subfield><subfield code="g">109(2014), 3 vom: 22. März, Seite 169-186</subfield><subfield code="w">(DE-627)129354252</subfield><subfield code="w">(DE-600)155895-X</subfield><subfield code="w">(DE-576)018081428</subfield><subfield code="x">0920-5691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:109</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:169-186</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11263-014-0707-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">109</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">03</subfield><subfield code="h">169-186</subfield></datafield></record></collection>
|
author |
Liu, Zhi-Yong |
spellingShingle |
Liu, Zhi-Yong ddc 004 misc Graph matching misc Combinatorial optimization misc Deterministic annealing misc Graduated optimization misc Feature correspondence Graph Matching by Simplified Convex-Concave Relaxation Procedure |
authorStr |
Liu, Zhi-Yong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129354252 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0920-5691 |
topic_title |
004 VZ Graph Matching by Simplified Convex-Concave Relaxation Procedure Graph matching Combinatorial optimization Deterministic annealing Graduated optimization Feature correspondence |
topic |
ddc 004 misc Graph matching misc Combinatorial optimization misc Deterministic annealing misc Graduated optimization misc Feature correspondence |
topic_unstemmed |
ddc 004 misc Graph matching misc Combinatorial optimization misc Deterministic annealing misc Graduated optimization misc Feature correspondence |
topic_browse |
ddc 004 misc Graph matching misc Combinatorial optimization misc Deterministic annealing misc Graduated optimization misc Feature correspondence |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of computer vision |
hierarchy_parent_id |
129354252 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
International journal of computer vision |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129354252 (DE-600)155895-X (DE-576)018081428 |
title |
Graph Matching by Simplified Convex-Concave Relaxation Procedure |
ctrlnum |
(DE-627)OLC2057748545 (DE-He213)s11263-014-0707-7-p |
title_full |
Graph Matching by Simplified Convex-Concave Relaxation Procedure |
author_sort |
Liu, Zhi-Yong |
journal |
International journal of computer vision |
journalStr |
International journal of computer vision |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
169 |
author_browse |
Liu, Zhi-Yong Qiao, Hong Yang, Xu Hoi, Steven C. H. |
container_volume |
109 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Liu, Zhi-Yong |
doi_str_mv |
10.1007/s11263-014-0707-7 |
dewey-full |
004 |
title_sort |
graph matching by simplified convex-concave relaxation procedure |
title_auth |
Graph Matching by Simplified Convex-Concave Relaxation Procedure |
abstract |
Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms. © Springer Science+Business Media New York 2014 |
abstractGer |
Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms. © Springer Science+Business Media New York 2014 |
abstract_unstemmed |
Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms. © Springer Science+Business Media New York 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_2244 GBV_ILN_4046 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Graph Matching by Simplified Convex-Concave Relaxation Procedure |
url |
https://doi.org/10.1007/s11263-014-0707-7 |
remote_bool |
false |
author2 |
Qiao, Hong Yang, Xu Hoi, Steven C. H. |
author2Str |
Qiao, Hong Yang, Xu Hoi, Steven C. H. |
ppnlink |
129354252 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11263-014-0707-7 |
up_date |
2024-07-03T16:09:09.371Z |
_version_ |
1803574784159645696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057748545</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072151.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11263-014-0707-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057748545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11263-014-0707-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Zhi-Yong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graph Matching by Simplified Convex-Concave Relaxation Procedure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deterministic annealing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graduated optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature correspondence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Hong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoi, Steven C. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computer vision</subfield><subfield code="d">Springer US, 1987</subfield><subfield code="g">109(2014), 3 vom: 22. März, Seite 169-186</subfield><subfield code="w">(DE-627)129354252</subfield><subfield code="w">(DE-600)155895-X</subfield><subfield code="w">(DE-576)018081428</subfield><subfield code="x">0920-5691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:109</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:169-186</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11263-014-0707-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">109</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">03</subfield><subfield code="h">169-186</subfield></datafield></record></collection>
|
score |
7.402669 |