A class of linear quadratic dynamic optimization problems with state dependent constraints
Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suit...
Ausführliche Beschreibung
Autor*in: |
Singh, Rajani [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematical methods of operations research - Springer Berlin Heidelberg, 1996, 91(2019), 2 vom: 06. Nov., Seite 325-355 |
---|---|
Übergeordnetes Werk: |
volume:91 ; year:2019 ; number:2 ; day:06 ; month:11 ; pages:325-355 |
Links: |
---|
DOI / URN: |
10.1007/s00186-019-00688-4 |
---|
Katalog-ID: |
OLC2057887405 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2057887405 | ||
003 | DE-627 | ||
005 | 20230504140245.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00186-019-00688-4 |2 doi | |
035 | |a (DE-627)OLC2057887405 | ||
035 | |a (DE-He213)s00186-019-00688-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 650 |a 330 |q VZ |
084 | |a 3,2 |2 ssgn | ||
084 | |a 85.00 |2 bkl | ||
100 | 1 | |a Singh, Rajani |e verfasserin |4 aut | |
245 | 1 | 0 | |a A class of linear quadratic dynamic optimization problems with state dependent constraints |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2019 | ||
520 | |a Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suits well economic problems like extraction of a renewable resource (e.g. a fishery or forest harvesting). The class of sub-problems considered encompasses a linear quadratic optimal control problem as well as models with maximal carrying capacity of the environment (saturation). This problem is also interesting from theoretical point of view—although it seems simple in its linear quadratic form, calculation of the optimal control is nontrivial because of constraints and the solutions has a complicated form. We consider both the infinite time horizon problem and its finite horizon truncations. | ||
650 | 4 | |a Bellman equation | |
650 | 4 | |a Constraints | |
650 | 4 | |a State dependent constraints | |
650 | 4 | |a State constraints | |
650 | 4 | |a Linear quadratic optimal control problem | |
650 | 4 | |a Renewable resources | |
650 | 4 | |a Carrying capacity | |
700 | 1 | |a Wiszniewska-Matyszkiel, Agnieszka |0 (orcid)0000-0001-5561-2715 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mathematical methods of operations research |d Springer Berlin Heidelberg, 1996 |g 91(2019), 2 vom: 06. Nov., Seite 325-355 |w (DE-627)195962478 |w (DE-600)1310695-8 |w (DE-576)051452545 |x 1432-2994 |7 nnns |
773 | 1 | 8 | |g volume:91 |g year:2019 |g number:2 |g day:06 |g month:11 |g pages:325-355 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00186-019-00688-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_78 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4319 | ||
936 | b | k | |a 85.00 |q VZ |
951 | |a AR | ||
952 | |d 91 |j 2019 |e 2 |b 06 |c 11 |h 325-355 |
author_variant |
r s rs a w m awm |
---|---|
matchkey_str |
article:14322994:2019----::casfierudaidnmcpiiainrbesiht |
hierarchy_sort_str |
2019 |
bklnumber |
85.00 |
publishDate |
2019 |
allfields |
10.1007/s00186-019-00688-4 doi (DE-627)OLC2057887405 (DE-He213)s00186-019-00688-4-p DE-627 ger DE-627 rakwb eng 650 330 VZ 3,2 ssgn 85.00 bkl Singh, Rajani verfasserin aut A class of linear quadratic dynamic optimization problems with state dependent constraints 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suits well economic problems like extraction of a renewable resource (e.g. a fishery or forest harvesting). The class of sub-problems considered encompasses a linear quadratic optimal control problem as well as models with maximal carrying capacity of the environment (saturation). This problem is also interesting from theoretical point of view—although it seems simple in its linear quadratic form, calculation of the optimal control is nontrivial because of constraints and the solutions has a complicated form. We consider both the infinite time horizon problem and its finite horizon truncations. Bellman equation Constraints State dependent constraints State constraints Linear quadratic optimal control problem Renewable resources Carrying capacity Wiszniewska-Matyszkiel, Agnieszka (orcid)0000-0001-5561-2715 aut Enthalten in Mathematical methods of operations research Springer Berlin Heidelberg, 1996 91(2019), 2 vom: 06. Nov., Seite 325-355 (DE-627)195962478 (DE-600)1310695-8 (DE-576)051452545 1432-2994 nnns volume:91 year:2019 number:2 day:06 month:11 pages:325-355 https://doi.org/10.1007/s00186-019-00688-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_78 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4319 85.00 VZ AR 91 2019 2 06 11 325-355 |
spelling |
10.1007/s00186-019-00688-4 doi (DE-627)OLC2057887405 (DE-He213)s00186-019-00688-4-p DE-627 ger DE-627 rakwb eng 650 330 VZ 3,2 ssgn 85.00 bkl Singh, Rajani verfasserin aut A class of linear quadratic dynamic optimization problems with state dependent constraints 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suits well economic problems like extraction of a renewable resource (e.g. a fishery or forest harvesting). The class of sub-problems considered encompasses a linear quadratic optimal control problem as well as models with maximal carrying capacity of the environment (saturation). This problem is also interesting from theoretical point of view—although it seems simple in its linear quadratic form, calculation of the optimal control is nontrivial because of constraints and the solutions has a complicated form. We consider both the infinite time horizon problem and its finite horizon truncations. Bellman equation Constraints State dependent constraints State constraints Linear quadratic optimal control problem Renewable resources Carrying capacity Wiszniewska-Matyszkiel, Agnieszka (orcid)0000-0001-5561-2715 aut Enthalten in Mathematical methods of operations research Springer Berlin Heidelberg, 1996 91(2019), 2 vom: 06. Nov., Seite 325-355 (DE-627)195962478 (DE-600)1310695-8 (DE-576)051452545 1432-2994 nnns volume:91 year:2019 number:2 day:06 month:11 pages:325-355 https://doi.org/10.1007/s00186-019-00688-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_78 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4319 85.00 VZ AR 91 2019 2 06 11 325-355 |
allfields_unstemmed |
10.1007/s00186-019-00688-4 doi (DE-627)OLC2057887405 (DE-He213)s00186-019-00688-4-p DE-627 ger DE-627 rakwb eng 650 330 VZ 3,2 ssgn 85.00 bkl Singh, Rajani verfasserin aut A class of linear quadratic dynamic optimization problems with state dependent constraints 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suits well economic problems like extraction of a renewable resource (e.g. a fishery or forest harvesting). The class of sub-problems considered encompasses a linear quadratic optimal control problem as well as models with maximal carrying capacity of the environment (saturation). This problem is also interesting from theoretical point of view—although it seems simple in its linear quadratic form, calculation of the optimal control is nontrivial because of constraints and the solutions has a complicated form. We consider both the infinite time horizon problem and its finite horizon truncations. Bellman equation Constraints State dependent constraints State constraints Linear quadratic optimal control problem Renewable resources Carrying capacity Wiszniewska-Matyszkiel, Agnieszka (orcid)0000-0001-5561-2715 aut Enthalten in Mathematical methods of operations research Springer Berlin Heidelberg, 1996 91(2019), 2 vom: 06. Nov., Seite 325-355 (DE-627)195962478 (DE-600)1310695-8 (DE-576)051452545 1432-2994 nnns volume:91 year:2019 number:2 day:06 month:11 pages:325-355 https://doi.org/10.1007/s00186-019-00688-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_78 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4319 85.00 VZ AR 91 2019 2 06 11 325-355 |
allfieldsGer |
10.1007/s00186-019-00688-4 doi (DE-627)OLC2057887405 (DE-He213)s00186-019-00688-4-p DE-627 ger DE-627 rakwb eng 650 330 VZ 3,2 ssgn 85.00 bkl Singh, Rajani verfasserin aut A class of linear quadratic dynamic optimization problems with state dependent constraints 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suits well economic problems like extraction of a renewable resource (e.g. a fishery or forest harvesting). The class of sub-problems considered encompasses a linear quadratic optimal control problem as well as models with maximal carrying capacity of the environment (saturation). This problem is also interesting from theoretical point of view—although it seems simple in its linear quadratic form, calculation of the optimal control is nontrivial because of constraints and the solutions has a complicated form. We consider both the infinite time horizon problem and its finite horizon truncations. Bellman equation Constraints State dependent constraints State constraints Linear quadratic optimal control problem Renewable resources Carrying capacity Wiszniewska-Matyszkiel, Agnieszka (orcid)0000-0001-5561-2715 aut Enthalten in Mathematical methods of operations research Springer Berlin Heidelberg, 1996 91(2019), 2 vom: 06. Nov., Seite 325-355 (DE-627)195962478 (DE-600)1310695-8 (DE-576)051452545 1432-2994 nnns volume:91 year:2019 number:2 day:06 month:11 pages:325-355 https://doi.org/10.1007/s00186-019-00688-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_78 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4319 85.00 VZ AR 91 2019 2 06 11 325-355 |
allfieldsSound |
10.1007/s00186-019-00688-4 doi (DE-627)OLC2057887405 (DE-He213)s00186-019-00688-4-p DE-627 ger DE-627 rakwb eng 650 330 VZ 3,2 ssgn 85.00 bkl Singh, Rajani verfasserin aut A class of linear quadratic dynamic optimization problems with state dependent constraints 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suits well economic problems like extraction of a renewable resource (e.g. a fishery or forest harvesting). The class of sub-problems considered encompasses a linear quadratic optimal control problem as well as models with maximal carrying capacity of the environment (saturation). This problem is also interesting from theoretical point of view—although it seems simple in its linear quadratic form, calculation of the optimal control is nontrivial because of constraints and the solutions has a complicated form. We consider both the infinite time horizon problem and its finite horizon truncations. Bellman equation Constraints State dependent constraints State constraints Linear quadratic optimal control problem Renewable resources Carrying capacity Wiszniewska-Matyszkiel, Agnieszka (orcid)0000-0001-5561-2715 aut Enthalten in Mathematical methods of operations research Springer Berlin Heidelberg, 1996 91(2019), 2 vom: 06. Nov., Seite 325-355 (DE-627)195962478 (DE-600)1310695-8 (DE-576)051452545 1432-2994 nnns volume:91 year:2019 number:2 day:06 month:11 pages:325-355 https://doi.org/10.1007/s00186-019-00688-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_78 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4319 85.00 VZ AR 91 2019 2 06 11 325-355 |
language |
English |
source |
Enthalten in Mathematical methods of operations research 91(2019), 2 vom: 06. Nov., Seite 325-355 volume:91 year:2019 number:2 day:06 month:11 pages:325-355 |
sourceStr |
Enthalten in Mathematical methods of operations research 91(2019), 2 vom: 06. Nov., Seite 325-355 volume:91 year:2019 number:2 day:06 month:11 pages:325-355 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bellman equation Constraints State dependent constraints State constraints Linear quadratic optimal control problem Renewable resources Carrying capacity |
dewey-raw |
650 |
isfreeaccess_bool |
false |
container_title |
Mathematical methods of operations research |
authorswithroles_txt_mv |
Singh, Rajani @@aut@@ Wiszniewska-Matyszkiel, Agnieszka @@aut@@ |
publishDateDaySort_date |
2019-11-06T00:00:00Z |
hierarchy_top_id |
195962478 |
dewey-sort |
3650 |
id |
OLC2057887405 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057887405</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504140245.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00186-019-00688-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057887405</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00186-019-00688-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Rajani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A class of linear quadratic dynamic optimization problems with state dependent constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suits well economic problems like extraction of a renewable resource (e.g. a fishery or forest harvesting). The class of sub-problems considered encompasses a linear quadratic optimal control problem as well as models with maximal carrying capacity of the environment (saturation). This problem is also interesting from theoretical point of view—although it seems simple in its linear quadratic form, calculation of the optimal control is nontrivial because of constraints and the solutions has a complicated form. We consider both the infinite time horizon problem and its finite horizon truncations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bellman equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">State dependent constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">State constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear quadratic optimal control problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renewable resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carrying capacity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiszniewska-Matyszkiel, Agnieszka</subfield><subfield code="0">(orcid)0000-0001-5561-2715</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical methods of operations research</subfield><subfield code="d">Springer Berlin Heidelberg, 1996</subfield><subfield code="g">91(2019), 2 vom: 06. Nov., Seite 325-355</subfield><subfield code="w">(DE-627)195962478</subfield><subfield code="w">(DE-600)1310695-8</subfield><subfield code="w">(DE-576)051452545</subfield><subfield code="x">1432-2994</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:06</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:325-355</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00186-019-00688-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_78</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">06</subfield><subfield code="c">11</subfield><subfield code="h">325-355</subfield></datafield></record></collection>
|
author |
Singh, Rajani |
spellingShingle |
Singh, Rajani ddc 650 ssgn 3,2 bkl 85.00 misc Bellman equation misc Constraints misc State dependent constraints misc State constraints misc Linear quadratic optimal control problem misc Renewable resources misc Carrying capacity A class of linear quadratic dynamic optimization problems with state dependent constraints |
authorStr |
Singh, Rajani |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)195962478 |
format |
Article |
dewey-ones |
650 - Management & auxiliary services 330 - Economics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-2994 |
topic_title |
650 330 VZ 3,2 ssgn 85.00 bkl A class of linear quadratic dynamic optimization problems with state dependent constraints Bellman equation Constraints State dependent constraints State constraints Linear quadratic optimal control problem Renewable resources Carrying capacity |
topic |
ddc 650 ssgn 3,2 bkl 85.00 misc Bellman equation misc Constraints misc State dependent constraints misc State constraints misc Linear quadratic optimal control problem misc Renewable resources misc Carrying capacity |
topic_unstemmed |
ddc 650 ssgn 3,2 bkl 85.00 misc Bellman equation misc Constraints misc State dependent constraints misc State constraints misc Linear quadratic optimal control problem misc Renewable resources misc Carrying capacity |
topic_browse |
ddc 650 ssgn 3,2 bkl 85.00 misc Bellman equation misc Constraints misc State dependent constraints misc State constraints misc Linear quadratic optimal control problem misc Renewable resources misc Carrying capacity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematical methods of operations research |
hierarchy_parent_id |
195962478 |
dewey-tens |
650 - Management & public relations 330 - Economics |
hierarchy_top_title |
Mathematical methods of operations research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)195962478 (DE-600)1310695-8 (DE-576)051452545 |
title |
A class of linear quadratic dynamic optimization problems with state dependent constraints |
ctrlnum |
(DE-627)OLC2057887405 (DE-He213)s00186-019-00688-4-p |
title_full |
A class of linear quadratic dynamic optimization problems with state dependent constraints |
author_sort |
Singh, Rajani |
journal |
Mathematical methods of operations research |
journalStr |
Mathematical methods of operations research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
325 |
author_browse |
Singh, Rajani Wiszniewska-Matyszkiel, Agnieszka |
container_volume |
91 |
class |
650 330 VZ 3,2 ssgn 85.00 bkl |
format_se |
Aufsätze |
author-letter |
Singh, Rajani |
doi_str_mv |
10.1007/s00186-019-00688-4 |
normlink |
(ORCID)0000-0001-5561-2715 |
normlink_prefix_str_mv |
(orcid)0000-0001-5561-2715 |
dewey-full |
650 330 |
title_sort |
a class of linear quadratic dynamic optimization problems with state dependent constraints |
title_auth |
A class of linear quadratic dynamic optimization problems with state dependent constraints |
abstract |
Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suits well economic problems like extraction of a renewable resource (e.g. a fishery or forest harvesting). The class of sub-problems considered encompasses a linear quadratic optimal control problem as well as models with maximal carrying capacity of the environment (saturation). This problem is also interesting from theoretical point of view—although it seems simple in its linear quadratic form, calculation of the optimal control is nontrivial because of constraints and the solutions has a complicated form. We consider both the infinite time horizon problem and its finite horizon truncations. © The Author(s) 2019 |
abstractGer |
Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suits well economic problems like extraction of a renewable resource (e.g. a fishery or forest harvesting). The class of sub-problems considered encompasses a linear quadratic optimal control problem as well as models with maximal carrying capacity of the environment (saturation). This problem is also interesting from theoretical point of view—although it seems simple in its linear quadratic form, calculation of the optimal control is nontrivial because of constraints and the solutions has a complicated form. We consider both the infinite time horizon problem and its finite horizon truncations. © The Author(s) 2019 |
abstract_unstemmed |
Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suits well economic problems like extraction of a renewable resource (e.g. a fishery or forest harvesting). The class of sub-problems considered encompasses a linear quadratic optimal control problem as well as models with maximal carrying capacity of the environment (saturation). This problem is also interesting from theoretical point of view—although it seems simple in its linear quadratic form, calculation of the optimal control is nontrivial because of constraints and the solutions has a complicated form. We consider both the infinite time horizon problem and its finite horizon truncations. © The Author(s) 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_78 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4319 |
container_issue |
2 |
title_short |
A class of linear quadratic dynamic optimization problems with state dependent constraints |
url |
https://doi.org/10.1007/s00186-019-00688-4 |
remote_bool |
false |
author2 |
Wiszniewska-Matyszkiel, Agnieszka |
author2Str |
Wiszniewska-Matyszkiel, Agnieszka |
ppnlink |
195962478 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00186-019-00688-4 |
up_date |
2024-07-03T16:44:29.264Z |
_version_ |
1803577007031713792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057887405</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504140245.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00186-019-00688-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057887405</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00186-019-00688-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Rajani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A class of linear quadratic dynamic optimization problems with state dependent constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we analyse a wide class of discrete time one-dimensional dynamic optimization problems—with strictly concave current payoffs and linear state dependent constraints on the control parameter as well as non-negativity constraint on the state variable and control. This model suits well economic problems like extraction of a renewable resource (e.g. a fishery or forest harvesting). The class of sub-problems considered encompasses a linear quadratic optimal control problem as well as models with maximal carrying capacity of the environment (saturation). This problem is also interesting from theoretical point of view—although it seems simple in its linear quadratic form, calculation of the optimal control is nontrivial because of constraints and the solutions has a complicated form. We consider both the infinite time horizon problem and its finite horizon truncations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bellman equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">State dependent constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">State constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear quadratic optimal control problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renewable resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carrying capacity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiszniewska-Matyszkiel, Agnieszka</subfield><subfield code="0">(orcid)0000-0001-5561-2715</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical methods of operations research</subfield><subfield code="d">Springer Berlin Heidelberg, 1996</subfield><subfield code="g">91(2019), 2 vom: 06. Nov., Seite 325-355</subfield><subfield code="w">(DE-627)195962478</subfield><subfield code="w">(DE-600)1310695-8</subfield><subfield code="w">(DE-576)051452545</subfield><subfield code="x">1432-2994</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:06</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:325-355</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00186-019-00688-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_78</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">06</subfield><subfield code="c">11</subfield><subfield code="h">325-355</subfield></datafield></record></collection>
|
score |
7.40042 |