Micro-chaos in digital control
Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that ca...
Ausführliche Beschreibung
Autor*in: |
Haller, G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1996 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag New York Inc. 1996 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of nonlinear science - Springer-Verlag, 1991, 6(1996), 5 vom: Sept., Seite 415-448 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:1996 ; number:5 ; month:09 ; pages:415-448 |
Links: |
---|
DOI / URN: |
10.1007/BF02440161 |
---|
Katalog-ID: |
OLC2057903729 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2057903729 | ||
003 | DE-627 | ||
005 | 20230331113452.0 | ||
007 | tu | ||
008 | 200819s1996 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02440161 |2 doi | |
035 | |a (DE-627)OLC2057903729 | ||
035 | |a (DE-He213)BF02440161-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Haller, G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Micro-chaos in digital control |
264 | 1 | |c 1996 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag New York Inc. 1996 | ||
520 | |a Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that captures exactly the dynamics of the continuous system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange attractor for a large set of parameter values. We also construct an “instability chart” on the parameter plane to describe how the size and structure of the chaotic attractor changes as the parameters are varied. The applications of our results include the stick-and-slip motion of machine tools and other mechanical problems with locally negative dissipation. | ||
650 | 4 | |a Chaotic Attractor | |
650 | 4 | |a Topological Entropy | |
650 | 4 | |a Parameter Plane | |
650 | 4 | |a Parameter Domain | |
650 | 4 | |a Digital Control | |
700 | 1 | |a Stépán, G. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of nonlinear science |d Springer-Verlag, 1991 |g 6(1996), 5 vom: Sept., Seite 415-448 |w (DE-627)130975990 |w (DE-600)1072984-7 |w (DE-576)025193295 |x 0938-8974 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:1996 |g number:5 |g month:09 |g pages:415-448 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02440161 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 6 |j 1996 |e 5 |c 09 |h 415-448 |
author_variant |
g h gh g s gs |
---|---|
matchkey_str |
article:09388974:1996----::ircasniia |
hierarchy_sort_str |
1996 |
publishDate |
1996 |
allfields |
10.1007/BF02440161 doi (DE-627)OLC2057903729 (DE-He213)BF02440161-p DE-627 ger DE-627 rakwb eng 530 510 VZ 11 ssgn Haller, G. verfasserin aut Micro-chaos in digital control 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1996 Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that captures exactly the dynamics of the continuous system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange attractor for a large set of parameter values. We also construct an “instability chart” on the parameter plane to describe how the size and structure of the chaotic attractor changes as the parameters are varied. The applications of our results include the stick-and-slip motion of machine tools and other mechanical problems with locally negative dissipation. Chaotic Attractor Topological Entropy Parameter Plane Parameter Domain Digital Control Stépán, G. aut Enthalten in Journal of nonlinear science Springer-Verlag, 1991 6(1996), 5 vom: Sept., Seite 415-448 (DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 0938-8974 nnns volume:6 year:1996 number:5 month:09 pages:415-448 https://doi.org/10.1007/BF02440161 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4323 AR 6 1996 5 09 415-448 |
spelling |
10.1007/BF02440161 doi (DE-627)OLC2057903729 (DE-He213)BF02440161-p DE-627 ger DE-627 rakwb eng 530 510 VZ 11 ssgn Haller, G. verfasserin aut Micro-chaos in digital control 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1996 Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that captures exactly the dynamics of the continuous system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange attractor for a large set of parameter values. We also construct an “instability chart” on the parameter plane to describe how the size and structure of the chaotic attractor changes as the parameters are varied. The applications of our results include the stick-and-slip motion of machine tools and other mechanical problems with locally negative dissipation. Chaotic Attractor Topological Entropy Parameter Plane Parameter Domain Digital Control Stépán, G. aut Enthalten in Journal of nonlinear science Springer-Verlag, 1991 6(1996), 5 vom: Sept., Seite 415-448 (DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 0938-8974 nnns volume:6 year:1996 number:5 month:09 pages:415-448 https://doi.org/10.1007/BF02440161 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4323 AR 6 1996 5 09 415-448 |
allfields_unstemmed |
10.1007/BF02440161 doi (DE-627)OLC2057903729 (DE-He213)BF02440161-p DE-627 ger DE-627 rakwb eng 530 510 VZ 11 ssgn Haller, G. verfasserin aut Micro-chaos in digital control 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1996 Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that captures exactly the dynamics of the continuous system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange attractor for a large set of parameter values. We also construct an “instability chart” on the parameter plane to describe how the size and structure of the chaotic attractor changes as the parameters are varied. The applications of our results include the stick-and-slip motion of machine tools and other mechanical problems with locally negative dissipation. Chaotic Attractor Topological Entropy Parameter Plane Parameter Domain Digital Control Stépán, G. aut Enthalten in Journal of nonlinear science Springer-Verlag, 1991 6(1996), 5 vom: Sept., Seite 415-448 (DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 0938-8974 nnns volume:6 year:1996 number:5 month:09 pages:415-448 https://doi.org/10.1007/BF02440161 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4323 AR 6 1996 5 09 415-448 |
allfieldsGer |
10.1007/BF02440161 doi (DE-627)OLC2057903729 (DE-He213)BF02440161-p DE-627 ger DE-627 rakwb eng 530 510 VZ 11 ssgn Haller, G. verfasserin aut Micro-chaos in digital control 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1996 Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that captures exactly the dynamics of the continuous system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange attractor for a large set of parameter values. We also construct an “instability chart” on the parameter plane to describe how the size and structure of the chaotic attractor changes as the parameters are varied. The applications of our results include the stick-and-slip motion of machine tools and other mechanical problems with locally negative dissipation. Chaotic Attractor Topological Entropy Parameter Plane Parameter Domain Digital Control Stépán, G. aut Enthalten in Journal of nonlinear science Springer-Verlag, 1991 6(1996), 5 vom: Sept., Seite 415-448 (DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 0938-8974 nnns volume:6 year:1996 number:5 month:09 pages:415-448 https://doi.org/10.1007/BF02440161 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4323 AR 6 1996 5 09 415-448 |
allfieldsSound |
10.1007/BF02440161 doi (DE-627)OLC2057903729 (DE-He213)BF02440161-p DE-627 ger DE-627 rakwb eng 530 510 VZ 11 ssgn Haller, G. verfasserin aut Micro-chaos in digital control 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1996 Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that captures exactly the dynamics of the continuous system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange attractor for a large set of parameter values. We also construct an “instability chart” on the parameter plane to describe how the size and structure of the chaotic attractor changes as the parameters are varied. The applications of our results include the stick-and-slip motion of machine tools and other mechanical problems with locally negative dissipation. Chaotic Attractor Topological Entropy Parameter Plane Parameter Domain Digital Control Stépán, G. aut Enthalten in Journal of nonlinear science Springer-Verlag, 1991 6(1996), 5 vom: Sept., Seite 415-448 (DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 0938-8974 nnns volume:6 year:1996 number:5 month:09 pages:415-448 https://doi.org/10.1007/BF02440161 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4323 AR 6 1996 5 09 415-448 |
language |
English |
source |
Enthalten in Journal of nonlinear science 6(1996), 5 vom: Sept., Seite 415-448 volume:6 year:1996 number:5 month:09 pages:415-448 |
sourceStr |
Enthalten in Journal of nonlinear science 6(1996), 5 vom: Sept., Seite 415-448 volume:6 year:1996 number:5 month:09 pages:415-448 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Chaotic Attractor Topological Entropy Parameter Plane Parameter Domain Digital Control |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of nonlinear science |
authorswithroles_txt_mv |
Haller, G. @@aut@@ Stépán, G. @@aut@@ |
publishDateDaySort_date |
1996-09-01T00:00:00Z |
hierarchy_top_id |
130975990 |
dewey-sort |
3530 |
id |
OLC2057903729 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057903729</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331113452.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1996 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02440161</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057903729</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02440161-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haller, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Micro-chaos in digital control</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1996</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag New York Inc. 1996</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that captures exactly the dynamics of the continuous system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange attractor for a large set of parameter values. We also construct an “instability chart” on the parameter plane to describe how the size and structure of the chaotic attractor changes as the parameters are varied. The applications of our results include the stick-and-slip motion of machine tools and other mechanical problems with locally negative dissipation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic Attractor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter Plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter Domain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital Control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stépán, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nonlinear science</subfield><subfield code="d">Springer-Verlag, 1991</subfield><subfield code="g">6(1996), 5 vom: Sept., Seite 415-448</subfield><subfield code="w">(DE-627)130975990</subfield><subfield code="w">(DE-600)1072984-7</subfield><subfield code="w">(DE-576)025193295</subfield><subfield code="x">0938-8974</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:1996</subfield><subfield code="g">number:5</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:415-448</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02440161</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">1996</subfield><subfield code="e">5</subfield><subfield code="c">09</subfield><subfield code="h">415-448</subfield></datafield></record></collection>
|
author |
Haller, G. |
spellingShingle |
Haller, G. ddc 530 ssgn 11 misc Chaotic Attractor misc Topological Entropy misc Parameter Plane misc Parameter Domain misc Digital Control Micro-chaos in digital control |
authorStr |
Haller, G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130975990 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0938-8974 |
topic_title |
530 510 VZ 11 ssgn Micro-chaos in digital control Chaotic Attractor Topological Entropy Parameter Plane Parameter Domain Digital Control |
topic |
ddc 530 ssgn 11 misc Chaotic Attractor misc Topological Entropy misc Parameter Plane misc Parameter Domain misc Digital Control |
topic_unstemmed |
ddc 530 ssgn 11 misc Chaotic Attractor misc Topological Entropy misc Parameter Plane misc Parameter Domain misc Digital Control |
topic_browse |
ddc 530 ssgn 11 misc Chaotic Attractor misc Topological Entropy misc Parameter Plane misc Parameter Domain misc Digital Control |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of nonlinear science |
hierarchy_parent_id |
130975990 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Journal of nonlinear science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 |
title |
Micro-chaos in digital control |
ctrlnum |
(DE-627)OLC2057903729 (DE-He213)BF02440161-p |
title_full |
Micro-chaos in digital control |
author_sort |
Haller, G. |
journal |
Journal of nonlinear science |
journalStr |
Journal of nonlinear science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1996 |
contenttype_str_mv |
txt |
container_start_page |
415 |
author_browse |
Haller, G. Stépán, G. |
container_volume |
6 |
class |
530 510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Haller, G. |
doi_str_mv |
10.1007/BF02440161 |
dewey-full |
530 510 |
title_sort |
micro-chaos in digital control |
title_auth |
Micro-chaos in digital control |
abstract |
Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that captures exactly the dynamics of the continuous system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange attractor for a large set of parameter values. We also construct an “instability chart” on the parameter plane to describe how the size and structure of the chaotic attractor changes as the parameters are varied. The applications of our results include the stick-and-slip motion of machine tools and other mechanical problems with locally negative dissipation. © Springer-Verlag New York Inc. 1996 |
abstractGer |
Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that captures exactly the dynamics of the continuous system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange attractor for a large set of parameter values. We also construct an “instability chart” on the parameter plane to describe how the size and structure of the chaotic attractor changes as the parameters are varied. The applications of our results include the stick-and-slip motion of machine tools and other mechanical problems with locally negative dissipation. © Springer-Verlag New York Inc. 1996 |
abstract_unstemmed |
Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that captures exactly the dynamics of the continuous system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange attractor for a large set of parameter values. We also construct an “instability chart” on the parameter plane to describe how the size and structure of the chaotic attractor changes as the parameters are varied. The applications of our results include the stick-and-slip motion of machine tools and other mechanical problems with locally negative dissipation. © Springer-Verlag New York Inc. 1996 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4323 |
container_issue |
5 |
title_short |
Micro-chaos in digital control |
url |
https://doi.org/10.1007/BF02440161 |
remote_bool |
false |
author2 |
Stépán, G. |
author2Str |
Stépán, G. |
ppnlink |
130975990 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02440161 |
up_date |
2024-07-03T16:48:21.854Z |
_version_ |
1803577250917908480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2057903729</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331113452.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1996 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02440161</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2057903729</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02440161-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haller, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Micro-chaos in digital control</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1996</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag New York Inc. 1996</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary In this paper we analyze a model for the effect of digital control on one-dimensional, linearly unstable dynamical systems. Our goal is to explain the existence of small, irregular oscillations that are frequently observed near the desired equilibrium. We derive a one-dimensional map that captures exactly the dynamics of the continuous system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange attractor for a large set of parameter values. We also construct an “instability chart” on the parameter plane to describe how the size and structure of the chaotic attractor changes as the parameters are varied. The applications of our results include the stick-and-slip motion of machine tools and other mechanical problems with locally negative dissipation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic Attractor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter Plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter Domain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital Control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stépán, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nonlinear science</subfield><subfield code="d">Springer-Verlag, 1991</subfield><subfield code="g">6(1996), 5 vom: Sept., Seite 415-448</subfield><subfield code="w">(DE-627)130975990</subfield><subfield code="w">(DE-600)1072984-7</subfield><subfield code="w">(DE-576)025193295</subfield><subfield code="x">0938-8974</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:1996</subfield><subfield code="g">number:5</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:415-448</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02440161</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">1996</subfield><subfield code="e">5</subfield><subfield code="c">09</subfield><subfield code="h">415-448</subfield></datafield></record></collection>
|
score |
7.401991 |