Nonautonomous Stochastic Search in Global Optimization
Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost f...
Ausführliche Beschreibung
Autor*in: |
Ombach, Jerzy [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of nonlinear science - Springer-Verlag, 1991, 22(2011), 2 vom: 29. Dez., Seite 169-185 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2011 ; number:2 ; day:29 ; month:12 ; pages:169-185 |
Links: |
---|
DOI / URN: |
10.1007/s00332-011-9112-3 |
---|
Katalog-ID: |
OLC205790699X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205790699X | ||
003 | DE-627 | ||
005 | 20230331113731.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00332-011-9112-3 |2 doi | |
035 | |a (DE-627)OLC205790699X | ||
035 | |a (DE-He213)s00332-011-9112-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Ombach, Jerzy |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonautonomous Stochastic Search in Global Optimization |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2011 | ||
520 | |a Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost function. We show some of its applications. | ||
650 | 4 | |a Global optimization | |
650 | 4 | |a Stochastic algorithm | |
650 | 4 | |a Random search | |
650 | 4 | |a Foias operator | |
650 | 4 | |a Lyapunov function | |
700 | 1 | |a Tarłowski, Dawid |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of nonlinear science |d Springer-Verlag, 1991 |g 22(2011), 2 vom: 29. Dez., Seite 169-185 |w (DE-627)130975990 |w (DE-600)1072984-7 |w (DE-576)025193295 |x 0938-8974 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2011 |g number:2 |g day:29 |g month:12 |g pages:169-185 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00332-011-9112-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 22 |j 2011 |e 2 |b 29 |c 12 |h 169-185 |
author_variant |
j o jo d t dt |
---|---|
matchkey_str |
article:09388974:2011----::oatnmusohsisacigoa |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s00332-011-9112-3 doi (DE-627)OLC205790699X (DE-He213)s00332-011-9112-3-p DE-627 ger DE-627 rakwb eng 530 510 VZ 11 ssgn Ombach, Jerzy verfasserin aut Nonautonomous Stochastic Search in Global Optimization 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2011 Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost function. We show some of its applications. Global optimization Stochastic algorithm Random search Foias operator Lyapunov function Tarłowski, Dawid aut Enthalten in Journal of nonlinear science Springer-Verlag, 1991 22(2011), 2 vom: 29. Dez., Seite 169-185 (DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 0938-8974 nnns volume:22 year:2011 number:2 day:29 month:12 pages:169-185 https://doi.org/10.1007/s00332-011-9112-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4277 AR 22 2011 2 29 12 169-185 |
spelling |
10.1007/s00332-011-9112-3 doi (DE-627)OLC205790699X (DE-He213)s00332-011-9112-3-p DE-627 ger DE-627 rakwb eng 530 510 VZ 11 ssgn Ombach, Jerzy verfasserin aut Nonautonomous Stochastic Search in Global Optimization 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2011 Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost function. We show some of its applications. Global optimization Stochastic algorithm Random search Foias operator Lyapunov function Tarłowski, Dawid aut Enthalten in Journal of nonlinear science Springer-Verlag, 1991 22(2011), 2 vom: 29. Dez., Seite 169-185 (DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 0938-8974 nnns volume:22 year:2011 number:2 day:29 month:12 pages:169-185 https://doi.org/10.1007/s00332-011-9112-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4277 AR 22 2011 2 29 12 169-185 |
allfields_unstemmed |
10.1007/s00332-011-9112-3 doi (DE-627)OLC205790699X (DE-He213)s00332-011-9112-3-p DE-627 ger DE-627 rakwb eng 530 510 VZ 11 ssgn Ombach, Jerzy verfasserin aut Nonautonomous Stochastic Search in Global Optimization 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2011 Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost function. We show some of its applications. Global optimization Stochastic algorithm Random search Foias operator Lyapunov function Tarłowski, Dawid aut Enthalten in Journal of nonlinear science Springer-Verlag, 1991 22(2011), 2 vom: 29. Dez., Seite 169-185 (DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 0938-8974 nnns volume:22 year:2011 number:2 day:29 month:12 pages:169-185 https://doi.org/10.1007/s00332-011-9112-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4277 AR 22 2011 2 29 12 169-185 |
allfieldsGer |
10.1007/s00332-011-9112-3 doi (DE-627)OLC205790699X (DE-He213)s00332-011-9112-3-p DE-627 ger DE-627 rakwb eng 530 510 VZ 11 ssgn Ombach, Jerzy verfasserin aut Nonautonomous Stochastic Search in Global Optimization 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2011 Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost function. We show some of its applications. Global optimization Stochastic algorithm Random search Foias operator Lyapunov function Tarłowski, Dawid aut Enthalten in Journal of nonlinear science Springer-Verlag, 1991 22(2011), 2 vom: 29. Dez., Seite 169-185 (DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 0938-8974 nnns volume:22 year:2011 number:2 day:29 month:12 pages:169-185 https://doi.org/10.1007/s00332-011-9112-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4277 AR 22 2011 2 29 12 169-185 |
allfieldsSound |
10.1007/s00332-011-9112-3 doi (DE-627)OLC205790699X (DE-He213)s00332-011-9112-3-p DE-627 ger DE-627 rakwb eng 530 510 VZ 11 ssgn Ombach, Jerzy verfasserin aut Nonautonomous Stochastic Search in Global Optimization 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2011 Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost function. We show some of its applications. Global optimization Stochastic algorithm Random search Foias operator Lyapunov function Tarłowski, Dawid aut Enthalten in Journal of nonlinear science Springer-Verlag, 1991 22(2011), 2 vom: 29. Dez., Seite 169-185 (DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 0938-8974 nnns volume:22 year:2011 number:2 day:29 month:12 pages:169-185 https://doi.org/10.1007/s00332-011-9112-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4277 AR 22 2011 2 29 12 169-185 |
language |
English |
source |
Enthalten in Journal of nonlinear science 22(2011), 2 vom: 29. Dez., Seite 169-185 volume:22 year:2011 number:2 day:29 month:12 pages:169-185 |
sourceStr |
Enthalten in Journal of nonlinear science 22(2011), 2 vom: 29. Dez., Seite 169-185 volume:22 year:2011 number:2 day:29 month:12 pages:169-185 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Global optimization Stochastic algorithm Random search Foias operator Lyapunov function |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of nonlinear science |
authorswithroles_txt_mv |
Ombach, Jerzy @@aut@@ Tarłowski, Dawid @@aut@@ |
publishDateDaySort_date |
2011-12-29T00:00:00Z |
hierarchy_top_id |
130975990 |
dewey-sort |
3530 |
id |
OLC205790699X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205790699X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331113731.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00332-011-9112-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205790699X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00332-011-9112-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ombach, Jerzy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonautonomous Stochastic Search in Global Optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost function. We show some of its applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Foias operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tarłowski, Dawid</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nonlinear science</subfield><subfield code="d">Springer-Verlag, 1991</subfield><subfield code="g">22(2011), 2 vom: 29. Dez., Seite 169-185</subfield><subfield code="w">(DE-627)130975990</subfield><subfield code="w">(DE-600)1072984-7</subfield><subfield code="w">(DE-576)025193295</subfield><subfield code="x">0938-8974</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:29</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:169-185</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00332-011-9112-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">29</subfield><subfield code="c">12</subfield><subfield code="h">169-185</subfield></datafield></record></collection>
|
author |
Ombach, Jerzy |
spellingShingle |
Ombach, Jerzy ddc 530 ssgn 11 misc Global optimization misc Stochastic algorithm misc Random search misc Foias operator misc Lyapunov function Nonautonomous Stochastic Search in Global Optimization |
authorStr |
Ombach, Jerzy |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130975990 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0938-8974 |
topic_title |
530 510 VZ 11 ssgn Nonautonomous Stochastic Search in Global Optimization Global optimization Stochastic algorithm Random search Foias operator Lyapunov function |
topic |
ddc 530 ssgn 11 misc Global optimization misc Stochastic algorithm misc Random search misc Foias operator misc Lyapunov function |
topic_unstemmed |
ddc 530 ssgn 11 misc Global optimization misc Stochastic algorithm misc Random search misc Foias operator misc Lyapunov function |
topic_browse |
ddc 530 ssgn 11 misc Global optimization misc Stochastic algorithm misc Random search misc Foias operator misc Lyapunov function |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of nonlinear science |
hierarchy_parent_id |
130975990 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Journal of nonlinear science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130975990 (DE-600)1072984-7 (DE-576)025193295 |
title |
Nonautonomous Stochastic Search in Global Optimization |
ctrlnum |
(DE-627)OLC205790699X (DE-He213)s00332-011-9112-3-p |
title_full |
Nonautonomous Stochastic Search in Global Optimization |
author_sort |
Ombach, Jerzy |
journal |
Journal of nonlinear science |
journalStr |
Journal of nonlinear science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
169 |
author_browse |
Ombach, Jerzy Tarłowski, Dawid |
container_volume |
22 |
class |
530 510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Ombach, Jerzy |
doi_str_mv |
10.1007/s00332-011-9112-3 |
dewey-full |
530 510 |
title_sort |
nonautonomous stochastic search in global optimization |
title_auth |
Nonautonomous Stochastic Search in Global Optimization |
abstract |
Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost function. We show some of its applications. © The Author(s) 2011 |
abstractGer |
Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost function. We show some of its applications. © The Author(s) 2011 |
abstract_unstemmed |
Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost function. We show some of its applications. © The Author(s) 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4277 |
container_issue |
2 |
title_short |
Nonautonomous Stochastic Search in Global Optimization |
url |
https://doi.org/10.1007/s00332-011-9112-3 |
remote_bool |
false |
author2 |
Tarłowski, Dawid |
author2Str |
Tarłowski, Dawid |
ppnlink |
130975990 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00332-011-9112-3 |
up_date |
2024-07-03T16:49:04.180Z |
_version_ |
1803577295299936256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205790699X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331113731.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00332-011-9112-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205790699X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00332-011-9112-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ombach, Jerzy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonautonomous Stochastic Search in Global Optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a general method how to prove convergence of a sequence of random variables generated by a nonautonomous scheme of the form Xt=Tt(Xt−1,Yt), where Yt represents randomness, used as an approximation of the set of solutions of the global optimization problem with a continuous cost function. We show some of its applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Foias operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tarłowski, Dawid</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nonlinear science</subfield><subfield code="d">Springer-Verlag, 1991</subfield><subfield code="g">22(2011), 2 vom: 29. Dez., Seite 169-185</subfield><subfield code="w">(DE-627)130975990</subfield><subfield code="w">(DE-600)1072984-7</subfield><subfield code="w">(DE-576)025193295</subfield><subfield code="x">0938-8974</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:29</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:169-185</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00332-011-9112-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">29</subfield><subfield code="c">12</subfield><subfield code="h">169-185</subfield></datafield></record></collection>
|
score |
7.401272 |