The relationship between tensile strength and flexure strength in fiber-reinforced composites
Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in...
Ausführliche Beschreibung
Autor*in: |
Whitney, J. M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1980 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Society for Experimental Mechanics, Inc. 1980 |
---|
Übergeordnetes Werk: |
Enthalten in: Experimental mechanics - Kluwer Academic Publishers, 1961, 20(1980), 6 vom: Juni, Seite 211-216 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:1980 ; number:6 ; month:06 ; pages:211-216 |
Links: |
---|
DOI / URN: |
10.1007/BF02327601 |
---|
Katalog-ID: |
OLC205815732X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205815732X | ||
003 | DE-627 | ||
005 | 20230504082625.0 | ||
007 | tu | ||
008 | 200819s1980 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02327601 |2 doi | |
035 | |a (DE-627)OLC205815732X | ||
035 | |a (DE-He213)BF02327601-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
100 | 1 | |a Whitney, J. M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The relationship between tensile strength and flexure strength in fiber-reinforced composites |
264 | 1 | |c 1980 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Society for Experimental Mechanics, Inc. 1980 | ||
520 | |a Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in an apparent increase in tensile strength as compared to the tensile test under uniform stress. In the present paper, this concept is explored by utilizing data from unidirectional graphite-epoxy composites to compare with theoretical results generated from a two-parameter Weibull distribution. A larger variation in tensile strength is observed from tensile-coupon data than from flexure data. Such differences are not in accordance with strength theories based on a uniform flaw distribution and raise questions concerning variability of the test methods, as well as sources of material variability. | ||
650 | 4 | |a Tensile Strength | |
650 | 4 | |a Tensile Test | |
650 | 4 | |a Weibull Distribution | |
650 | 4 | |a Stress Gradient | |
650 | 4 | |a Uniform Stress | |
700 | 1 | |a Knight, M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Experimental mechanics |d Kluwer Academic Publishers, 1961 |g 20(1980), 6 vom: Juni, Seite 211-216 |w (DE-627)129593990 |w (DE-600)240480-1 |w (DE-576)015086852 |x 0014-4851 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:1980 |g number:6 |g month:06 |g pages:211-216 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02327601 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4309 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 1980 |e 6 |c 06 |h 211-216 |
author_variant |
j m w jm jmw m k mk |
---|---|
matchkey_str |
article:00144851:1980----::hrltosibteneslsrntadlxrsrntifb |
hierarchy_sort_str |
1980 |
publishDate |
1980 |
allfields |
10.1007/BF02327601 doi (DE-627)OLC205815732X (DE-He213)BF02327601-p DE-627 ger DE-627 rakwb eng 690 VZ Whitney, J. M. verfasserin aut The relationship between tensile strength and flexure strength in fiber-reinforced composites 1980 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics, Inc. 1980 Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in an apparent increase in tensile strength as compared to the tensile test under uniform stress. In the present paper, this concept is explored by utilizing data from unidirectional graphite-epoxy composites to compare with theoretical results generated from a two-parameter Weibull distribution. A larger variation in tensile strength is observed from tensile-coupon data than from flexure data. Such differences are not in accordance with strength theories based on a uniform flaw distribution and raise questions concerning variability of the test methods, as well as sources of material variability. Tensile Strength Tensile Test Weibull Distribution Stress Gradient Uniform Stress Knight, M. aut Enthalten in Experimental mechanics Kluwer Academic Publishers, 1961 20(1980), 6 vom: Juni, Seite 211-216 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:20 year:1980 number:6 month:06 pages:211-216 https://doi.org/10.1007/BF02327601 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4319 GBV_ILN_4700 AR 20 1980 6 06 211-216 |
spelling |
10.1007/BF02327601 doi (DE-627)OLC205815732X (DE-He213)BF02327601-p DE-627 ger DE-627 rakwb eng 690 VZ Whitney, J. M. verfasserin aut The relationship between tensile strength and flexure strength in fiber-reinforced composites 1980 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics, Inc. 1980 Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in an apparent increase in tensile strength as compared to the tensile test under uniform stress. In the present paper, this concept is explored by utilizing data from unidirectional graphite-epoxy composites to compare with theoretical results generated from a two-parameter Weibull distribution. A larger variation in tensile strength is observed from tensile-coupon data than from flexure data. Such differences are not in accordance with strength theories based on a uniform flaw distribution and raise questions concerning variability of the test methods, as well as sources of material variability. Tensile Strength Tensile Test Weibull Distribution Stress Gradient Uniform Stress Knight, M. aut Enthalten in Experimental mechanics Kluwer Academic Publishers, 1961 20(1980), 6 vom: Juni, Seite 211-216 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:20 year:1980 number:6 month:06 pages:211-216 https://doi.org/10.1007/BF02327601 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4319 GBV_ILN_4700 AR 20 1980 6 06 211-216 |
allfields_unstemmed |
10.1007/BF02327601 doi (DE-627)OLC205815732X (DE-He213)BF02327601-p DE-627 ger DE-627 rakwb eng 690 VZ Whitney, J. M. verfasserin aut The relationship between tensile strength and flexure strength in fiber-reinforced composites 1980 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics, Inc. 1980 Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in an apparent increase in tensile strength as compared to the tensile test under uniform stress. In the present paper, this concept is explored by utilizing data from unidirectional graphite-epoxy composites to compare with theoretical results generated from a two-parameter Weibull distribution. A larger variation in tensile strength is observed from tensile-coupon data than from flexure data. Such differences are not in accordance with strength theories based on a uniform flaw distribution and raise questions concerning variability of the test methods, as well as sources of material variability. Tensile Strength Tensile Test Weibull Distribution Stress Gradient Uniform Stress Knight, M. aut Enthalten in Experimental mechanics Kluwer Academic Publishers, 1961 20(1980), 6 vom: Juni, Seite 211-216 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:20 year:1980 number:6 month:06 pages:211-216 https://doi.org/10.1007/BF02327601 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4319 GBV_ILN_4700 AR 20 1980 6 06 211-216 |
allfieldsGer |
10.1007/BF02327601 doi (DE-627)OLC205815732X (DE-He213)BF02327601-p DE-627 ger DE-627 rakwb eng 690 VZ Whitney, J. M. verfasserin aut The relationship between tensile strength and flexure strength in fiber-reinforced composites 1980 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics, Inc. 1980 Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in an apparent increase in tensile strength as compared to the tensile test under uniform stress. In the present paper, this concept is explored by utilizing data from unidirectional graphite-epoxy composites to compare with theoretical results generated from a two-parameter Weibull distribution. A larger variation in tensile strength is observed from tensile-coupon data than from flexure data. Such differences are not in accordance with strength theories based on a uniform flaw distribution and raise questions concerning variability of the test methods, as well as sources of material variability. Tensile Strength Tensile Test Weibull Distribution Stress Gradient Uniform Stress Knight, M. aut Enthalten in Experimental mechanics Kluwer Academic Publishers, 1961 20(1980), 6 vom: Juni, Seite 211-216 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:20 year:1980 number:6 month:06 pages:211-216 https://doi.org/10.1007/BF02327601 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4319 GBV_ILN_4700 AR 20 1980 6 06 211-216 |
allfieldsSound |
10.1007/BF02327601 doi (DE-627)OLC205815732X (DE-He213)BF02327601-p DE-627 ger DE-627 rakwb eng 690 VZ Whitney, J. M. verfasserin aut The relationship between tensile strength and flexure strength in fiber-reinforced composites 1980 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics, Inc. 1980 Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in an apparent increase in tensile strength as compared to the tensile test under uniform stress. In the present paper, this concept is explored by utilizing data from unidirectional graphite-epoxy composites to compare with theoretical results generated from a two-parameter Weibull distribution. A larger variation in tensile strength is observed from tensile-coupon data than from flexure data. Such differences are not in accordance with strength theories based on a uniform flaw distribution and raise questions concerning variability of the test methods, as well as sources of material variability. Tensile Strength Tensile Test Weibull Distribution Stress Gradient Uniform Stress Knight, M. aut Enthalten in Experimental mechanics Kluwer Academic Publishers, 1961 20(1980), 6 vom: Juni, Seite 211-216 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:20 year:1980 number:6 month:06 pages:211-216 https://doi.org/10.1007/BF02327601 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4319 GBV_ILN_4700 AR 20 1980 6 06 211-216 |
language |
English |
source |
Enthalten in Experimental mechanics 20(1980), 6 vom: Juni, Seite 211-216 volume:20 year:1980 number:6 month:06 pages:211-216 |
sourceStr |
Enthalten in Experimental mechanics 20(1980), 6 vom: Juni, Seite 211-216 volume:20 year:1980 number:6 month:06 pages:211-216 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tensile Strength Tensile Test Weibull Distribution Stress Gradient Uniform Stress |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Experimental mechanics |
authorswithroles_txt_mv |
Whitney, J. M. @@aut@@ Knight, M. @@aut@@ |
publishDateDaySort_date |
1980-06-01T00:00:00Z |
hierarchy_top_id |
129593990 |
dewey-sort |
3690 |
id |
OLC205815732X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205815732X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504082625.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1980 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02327601</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205815732X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02327601-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Whitney, J. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The relationship between tensile strength and flexure strength in fiber-reinforced composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1980</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Society for Experimental Mechanics, Inc. 1980</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in an apparent increase in tensile strength as compared to the tensile test under uniform stress. In the present paper, this concept is explored by utilizing data from unidirectional graphite-epoxy composites to compare with theoretical results generated from a two-parameter Weibull distribution. A larger variation in tensile strength is observed from tensile-coupon data than from flexure data. Such differences are not in accordance with strength theories based on a uniform flaw distribution and raise questions concerning variability of the test methods, as well as sources of material variability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tensile Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tensile Test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weibull Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uniform Stress</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Knight, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental mechanics</subfield><subfield code="d">Kluwer Academic Publishers, 1961</subfield><subfield code="g">20(1980), 6 vom: Juni, Seite 211-216</subfield><subfield code="w">(DE-627)129593990</subfield><subfield code="w">(DE-600)240480-1</subfield><subfield code="w">(DE-576)015086852</subfield><subfield code="x">0014-4851</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:1980</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:211-216</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02327601</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">1980</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">211-216</subfield></datafield></record></collection>
|
author |
Whitney, J. M. |
spellingShingle |
Whitney, J. M. ddc 690 misc Tensile Strength misc Tensile Test misc Weibull Distribution misc Stress Gradient misc Uniform Stress The relationship between tensile strength and flexure strength in fiber-reinforced composites |
authorStr |
Whitney, J. M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129593990 |
format |
Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0014-4851 |
topic_title |
690 VZ The relationship between tensile strength and flexure strength in fiber-reinforced composites Tensile Strength Tensile Test Weibull Distribution Stress Gradient Uniform Stress |
topic |
ddc 690 misc Tensile Strength misc Tensile Test misc Weibull Distribution misc Stress Gradient misc Uniform Stress |
topic_unstemmed |
ddc 690 misc Tensile Strength misc Tensile Test misc Weibull Distribution misc Stress Gradient misc Uniform Stress |
topic_browse |
ddc 690 misc Tensile Strength misc Tensile Test misc Weibull Distribution misc Stress Gradient misc Uniform Stress |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Experimental mechanics |
hierarchy_parent_id |
129593990 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Experimental mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 |
title |
The relationship between tensile strength and flexure strength in fiber-reinforced composites |
ctrlnum |
(DE-627)OLC205815732X (DE-He213)BF02327601-p |
title_full |
The relationship between tensile strength and flexure strength in fiber-reinforced composites |
author_sort |
Whitney, J. M. |
journal |
Experimental mechanics |
journalStr |
Experimental mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1980 |
contenttype_str_mv |
txt |
container_start_page |
211 |
author_browse |
Whitney, J. M. Knight, M. |
container_volume |
20 |
class |
690 VZ |
format_se |
Aufsätze |
author-letter |
Whitney, J. M. |
doi_str_mv |
10.1007/BF02327601 |
dewey-full |
690 |
title_sort |
the relationship between tensile strength and flexure strength in fiber-reinforced composites |
title_auth |
The relationship between tensile strength and flexure strength in fiber-reinforced composites |
abstract |
Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in an apparent increase in tensile strength as compared to the tensile test under uniform stress. In the present paper, this concept is explored by utilizing data from unidirectional graphite-epoxy composites to compare with theoretical results generated from a two-parameter Weibull distribution. A larger variation in tensile strength is observed from tensile-coupon data than from flexure data. Such differences are not in accordance with strength theories based on a uniform flaw distribution and raise questions concerning variability of the test methods, as well as sources of material variability. © Society for Experimental Mechanics, Inc. 1980 |
abstractGer |
Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in an apparent increase in tensile strength as compared to the tensile test under uniform stress. In the present paper, this concept is explored by utilizing data from unidirectional graphite-epoxy composites to compare with theoretical results generated from a two-parameter Weibull distribution. A larger variation in tensile strength is observed from tensile-coupon data than from flexure data. Such differences are not in accordance with strength theories based on a uniform flaw distribution and raise questions concerning variability of the test methods, as well as sources of material variability. © Society for Experimental Mechanics, Inc. 1980 |
abstract_unstemmed |
Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in an apparent increase in tensile strength as compared to the tensile test under uniform stress. In the present paper, this concept is explored by utilizing data from unidirectional graphite-epoxy composites to compare with theoretical results generated from a two-parameter Weibull distribution. A larger variation in tensile strength is observed from tensile-coupon data than from flexure data. Such differences are not in accordance with strength theories based on a uniform flaw distribution and raise questions concerning variability of the test methods, as well as sources of material variability. © Society for Experimental Mechanics, Inc. 1980 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
6 |
title_short |
The relationship between tensile strength and flexure strength in fiber-reinforced composites |
url |
https://doi.org/10.1007/BF02327601 |
remote_bool |
false |
author2 |
Knight, M. |
author2Str |
Knight, M. |
ppnlink |
129593990 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02327601 |
up_date |
2024-07-03T17:54:51.531Z |
_version_ |
1803581434395361280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205815732X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504082625.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1980 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02327601</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205815732X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02327601-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Whitney, J. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The relationship between tensile strength and flexure strength in fiber-reinforced composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1980</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Society for Experimental Mechanics, Inc. 1980</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Tensile data on unidirectional composites generated from a flexure test usually yield a higher strength than observed from a standard tensile coupon. According to a statistical-strength theory based on a Weibull distribution, the presence of a stress gradient in the flexure-test results in an apparent increase in tensile strength as compared to the tensile test under uniform stress. In the present paper, this concept is explored by utilizing data from unidirectional graphite-epoxy composites to compare with theoretical results generated from a two-parameter Weibull distribution. A larger variation in tensile strength is observed from tensile-coupon data than from flexure data. Such differences are not in accordance with strength theories based on a uniform flaw distribution and raise questions concerning variability of the test methods, as well as sources of material variability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tensile Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tensile Test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weibull Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uniform Stress</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Knight, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental mechanics</subfield><subfield code="d">Kluwer Academic Publishers, 1961</subfield><subfield code="g">20(1980), 6 vom: Juni, Seite 211-216</subfield><subfield code="w">(DE-627)129593990</subfield><subfield code="w">(DE-600)240480-1</subfield><subfield code="w">(DE-576)015086852</subfield><subfield code="x">0014-4851</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:1980</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:211-216</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02327601</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">1980</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">211-216</subfield></datafield></record></collection>
|
score |
7.4010506 |