Rosetta Stone Experiments
Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing...
Ausführliche Beschreibung
Autor*in: |
Shockey, D. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Society for Experimental Mechanics 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Experimental mechanics - Springer US, 1961, 47(2007), 5 vom: 01. März, Seite 581-594 |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2007 ; number:5 ; day:01 ; month:03 ; pages:581-594 |
Links: |
---|
DOI / URN: |
10.1007/s11340-006-9030-8 |
---|
Katalog-ID: |
OLC2058174216 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2058174216 | ||
003 | DE-627 | ||
005 | 20230504082725.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11340-006-9030-8 |2 doi | |
035 | |a (DE-627)OLC2058174216 | ||
035 | |a (DE-He213)s11340-006-9030-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
100 | 1 | |a Shockey, D. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rosetta Stone Experiments |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Society for Experimental Mechanics 2007 | ||
520 | |a Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing one another’s evolution. An alternative “meso” fracture mechanics is needed that treats microfailure activity while permitting fast and inexpensive predictive computations. This paper discusses the approach and experiments that elucidate and quantify failure physics on the micron level. “Rosetta Stone” experiments that isolate a damage mode, produce statistical distributions of damage features, and “freeze in” damage at various stages of development are described and illustrated. The observations and data lead to equations describing nucleation and growth of cracks, voids, and shear bands. The resulting mesomechanical material failure models link the microworld with the macroworld and can be used in continuum hydrocodes for fast, efficient simulations of dynamic fracture scenarios. | ||
650 | 4 | |a Dynamic fracture | |
650 | 4 | |a Adiabatic shear bands | |
650 | 4 | |a Taylor test | |
650 | 4 | |a Mesomechanics | |
650 | 4 | |a Nucleation and growth | |
650 | 4 | |a Failure kinetics | |
650 | 4 | |a Microfailure models | |
773 | 0 | 8 | |i Enthalten in |t Experimental mechanics |d Springer US, 1961 |g 47(2007), 5 vom: 01. März, Seite 581-594 |w (DE-627)129593990 |w (DE-600)240480-1 |w (DE-576)015086852 |x 0014-4851 |7 nnns |
773 | 1 | 8 | |g volume:47 |g year:2007 |g number:5 |g day:01 |g month:03 |g pages:581-594 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11340-006-9030-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 47 |j 2007 |e 5 |b 01 |c 03 |h 581-594 |
author_variant |
d a s da das |
---|---|
matchkey_str |
article:00144851:2007----::oetsoex |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s11340-006-9030-8 doi (DE-627)OLC2058174216 (DE-He213)s11340-006-9030-8-p DE-627 ger DE-627 rakwb eng 690 VZ Shockey, D. A. verfasserin aut Rosetta Stone Experiments 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics 2007 Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing one another’s evolution. An alternative “meso” fracture mechanics is needed that treats microfailure activity while permitting fast and inexpensive predictive computations. This paper discusses the approach and experiments that elucidate and quantify failure physics on the micron level. “Rosetta Stone” experiments that isolate a damage mode, produce statistical distributions of damage features, and “freeze in” damage at various stages of development are described and illustrated. The observations and data lead to equations describing nucleation and growth of cracks, voids, and shear bands. The resulting mesomechanical material failure models link the microworld with the macroworld and can be used in continuum hydrocodes for fast, efficient simulations of dynamic fracture scenarios. Dynamic fracture Adiabatic shear bands Taylor test Mesomechanics Nucleation and growth Failure kinetics Microfailure models Enthalten in Experimental mechanics Springer US, 1961 47(2007), 5 vom: 01. März, Seite 581-594 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:47 year:2007 number:5 day:01 month:03 pages:581-594 https://doi.org/10.1007/s11340-006-9030-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 AR 47 2007 5 01 03 581-594 |
spelling |
10.1007/s11340-006-9030-8 doi (DE-627)OLC2058174216 (DE-He213)s11340-006-9030-8-p DE-627 ger DE-627 rakwb eng 690 VZ Shockey, D. A. verfasserin aut Rosetta Stone Experiments 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics 2007 Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing one another’s evolution. An alternative “meso” fracture mechanics is needed that treats microfailure activity while permitting fast and inexpensive predictive computations. This paper discusses the approach and experiments that elucidate and quantify failure physics on the micron level. “Rosetta Stone” experiments that isolate a damage mode, produce statistical distributions of damage features, and “freeze in” damage at various stages of development are described and illustrated. The observations and data lead to equations describing nucleation and growth of cracks, voids, and shear bands. The resulting mesomechanical material failure models link the microworld with the macroworld and can be used in continuum hydrocodes for fast, efficient simulations of dynamic fracture scenarios. Dynamic fracture Adiabatic shear bands Taylor test Mesomechanics Nucleation and growth Failure kinetics Microfailure models Enthalten in Experimental mechanics Springer US, 1961 47(2007), 5 vom: 01. März, Seite 581-594 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:47 year:2007 number:5 day:01 month:03 pages:581-594 https://doi.org/10.1007/s11340-006-9030-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 AR 47 2007 5 01 03 581-594 |
allfields_unstemmed |
10.1007/s11340-006-9030-8 doi (DE-627)OLC2058174216 (DE-He213)s11340-006-9030-8-p DE-627 ger DE-627 rakwb eng 690 VZ Shockey, D. A. verfasserin aut Rosetta Stone Experiments 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics 2007 Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing one another’s evolution. An alternative “meso” fracture mechanics is needed that treats microfailure activity while permitting fast and inexpensive predictive computations. This paper discusses the approach and experiments that elucidate and quantify failure physics on the micron level. “Rosetta Stone” experiments that isolate a damage mode, produce statistical distributions of damage features, and “freeze in” damage at various stages of development are described and illustrated. The observations and data lead to equations describing nucleation and growth of cracks, voids, and shear bands. The resulting mesomechanical material failure models link the microworld with the macroworld and can be used in continuum hydrocodes for fast, efficient simulations of dynamic fracture scenarios. Dynamic fracture Adiabatic shear bands Taylor test Mesomechanics Nucleation and growth Failure kinetics Microfailure models Enthalten in Experimental mechanics Springer US, 1961 47(2007), 5 vom: 01. März, Seite 581-594 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:47 year:2007 number:5 day:01 month:03 pages:581-594 https://doi.org/10.1007/s11340-006-9030-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 AR 47 2007 5 01 03 581-594 |
allfieldsGer |
10.1007/s11340-006-9030-8 doi (DE-627)OLC2058174216 (DE-He213)s11340-006-9030-8-p DE-627 ger DE-627 rakwb eng 690 VZ Shockey, D. A. verfasserin aut Rosetta Stone Experiments 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics 2007 Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing one another’s evolution. An alternative “meso” fracture mechanics is needed that treats microfailure activity while permitting fast and inexpensive predictive computations. This paper discusses the approach and experiments that elucidate and quantify failure physics on the micron level. “Rosetta Stone” experiments that isolate a damage mode, produce statistical distributions of damage features, and “freeze in” damage at various stages of development are described and illustrated. The observations and data lead to equations describing nucleation and growth of cracks, voids, and shear bands. The resulting mesomechanical material failure models link the microworld with the macroworld and can be used in continuum hydrocodes for fast, efficient simulations of dynamic fracture scenarios. Dynamic fracture Adiabatic shear bands Taylor test Mesomechanics Nucleation and growth Failure kinetics Microfailure models Enthalten in Experimental mechanics Springer US, 1961 47(2007), 5 vom: 01. März, Seite 581-594 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:47 year:2007 number:5 day:01 month:03 pages:581-594 https://doi.org/10.1007/s11340-006-9030-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 AR 47 2007 5 01 03 581-594 |
allfieldsSound |
10.1007/s11340-006-9030-8 doi (DE-627)OLC2058174216 (DE-He213)s11340-006-9030-8-p DE-627 ger DE-627 rakwb eng 690 VZ Shockey, D. A. verfasserin aut Rosetta Stone Experiments 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics 2007 Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing one another’s evolution. An alternative “meso” fracture mechanics is needed that treats microfailure activity while permitting fast and inexpensive predictive computations. This paper discusses the approach and experiments that elucidate and quantify failure physics on the micron level. “Rosetta Stone” experiments that isolate a damage mode, produce statistical distributions of damage features, and “freeze in” damage at various stages of development are described and illustrated. The observations and data lead to equations describing nucleation and growth of cracks, voids, and shear bands. The resulting mesomechanical material failure models link the microworld with the macroworld and can be used in continuum hydrocodes for fast, efficient simulations of dynamic fracture scenarios. Dynamic fracture Adiabatic shear bands Taylor test Mesomechanics Nucleation and growth Failure kinetics Microfailure models Enthalten in Experimental mechanics Springer US, 1961 47(2007), 5 vom: 01. März, Seite 581-594 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:47 year:2007 number:5 day:01 month:03 pages:581-594 https://doi.org/10.1007/s11340-006-9030-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 AR 47 2007 5 01 03 581-594 |
language |
English |
source |
Enthalten in Experimental mechanics 47(2007), 5 vom: 01. März, Seite 581-594 volume:47 year:2007 number:5 day:01 month:03 pages:581-594 |
sourceStr |
Enthalten in Experimental mechanics 47(2007), 5 vom: 01. März, Seite 581-594 volume:47 year:2007 number:5 day:01 month:03 pages:581-594 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dynamic fracture Adiabatic shear bands Taylor test Mesomechanics Nucleation and growth Failure kinetics Microfailure models |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Experimental mechanics |
authorswithroles_txt_mv |
Shockey, D. A. @@aut@@ |
publishDateDaySort_date |
2007-03-01T00:00:00Z |
hierarchy_top_id |
129593990 |
dewey-sort |
3690 |
id |
OLC2058174216 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058174216</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504082725.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11340-006-9030-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058174216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11340-006-9030-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shockey, D. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rosetta Stone Experiments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Society for Experimental Mechanics 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing one another’s evolution. An alternative “meso” fracture mechanics is needed that treats microfailure activity while permitting fast and inexpensive predictive computations. This paper discusses the approach and experiments that elucidate and quantify failure physics on the micron level. “Rosetta Stone” experiments that isolate a damage mode, produce statistical distributions of damage features, and “freeze in” damage at various stages of development are described and illustrated. The observations and data lead to equations describing nucleation and growth of cracks, voids, and shear bands. The resulting mesomechanical material failure models link the microworld with the macroworld and can be used in continuum hydrocodes for fast, efficient simulations of dynamic fracture scenarios.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic fracture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adiabatic shear bands</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mesomechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nucleation and growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Failure kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microfailure models</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental mechanics</subfield><subfield code="d">Springer US, 1961</subfield><subfield code="g">47(2007), 5 vom: 01. März, Seite 581-594</subfield><subfield code="w">(DE-627)129593990</subfield><subfield code="w">(DE-600)240480-1</subfield><subfield code="w">(DE-576)015086852</subfield><subfield code="x">0014-4851</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:5</subfield><subfield code="g">day:01</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:581-594</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11340-006-9030-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2007</subfield><subfield code="e">5</subfield><subfield code="b">01</subfield><subfield code="c">03</subfield><subfield code="h">581-594</subfield></datafield></record></collection>
|
author |
Shockey, D. A. |
spellingShingle |
Shockey, D. A. ddc 690 misc Dynamic fracture misc Adiabatic shear bands misc Taylor test misc Mesomechanics misc Nucleation and growth misc Failure kinetics misc Microfailure models Rosetta Stone Experiments |
authorStr |
Shockey, D. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129593990 |
format |
Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0014-4851 |
topic_title |
690 VZ Rosetta Stone Experiments Dynamic fracture Adiabatic shear bands Taylor test Mesomechanics Nucleation and growth Failure kinetics Microfailure models |
topic |
ddc 690 misc Dynamic fracture misc Adiabatic shear bands misc Taylor test misc Mesomechanics misc Nucleation and growth misc Failure kinetics misc Microfailure models |
topic_unstemmed |
ddc 690 misc Dynamic fracture misc Adiabatic shear bands misc Taylor test misc Mesomechanics misc Nucleation and growth misc Failure kinetics misc Microfailure models |
topic_browse |
ddc 690 misc Dynamic fracture misc Adiabatic shear bands misc Taylor test misc Mesomechanics misc Nucleation and growth misc Failure kinetics misc Microfailure models |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Experimental mechanics |
hierarchy_parent_id |
129593990 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Experimental mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 |
title |
Rosetta Stone Experiments |
ctrlnum |
(DE-627)OLC2058174216 (DE-He213)s11340-006-9030-8-p |
title_full |
Rosetta Stone Experiments |
author_sort |
Shockey, D. A. |
journal |
Experimental mechanics |
journalStr |
Experimental mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
581 |
author_browse |
Shockey, D. A. |
container_volume |
47 |
class |
690 VZ |
format_se |
Aufsätze |
author-letter |
Shockey, D. A. |
doi_str_mv |
10.1007/s11340-006-9030-8 |
dewey-full |
690 |
title_sort |
rosetta stone experiments |
title_auth |
Rosetta Stone Experiments |
abstract |
Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing one another’s evolution. An alternative “meso” fracture mechanics is needed that treats microfailure activity while permitting fast and inexpensive predictive computations. This paper discusses the approach and experiments that elucidate and quantify failure physics on the micron level. “Rosetta Stone” experiments that isolate a damage mode, produce statistical distributions of damage features, and “freeze in” damage at various stages of development are described and illustrated. The observations and data lead to equations describing nucleation and growth of cracks, voids, and shear bands. The resulting mesomechanical material failure models link the microworld with the macroworld and can be used in continuum hydrocodes for fast, efficient simulations of dynamic fracture scenarios. © Society for Experimental Mechanics 2007 |
abstractGer |
Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing one another’s evolution. An alternative “meso” fracture mechanics is needed that treats microfailure activity while permitting fast and inexpensive predictive computations. This paper discusses the approach and experiments that elucidate and quantify failure physics on the micron level. “Rosetta Stone” experiments that isolate a damage mode, produce statistical distributions of damage features, and “freeze in” damage at various stages of development are described and illustrated. The observations and data lead to equations describing nucleation and growth of cracks, voids, and shear bands. The resulting mesomechanical material failure models link the microworld with the macroworld and can be used in continuum hydrocodes for fast, efficient simulations of dynamic fracture scenarios. © Society for Experimental Mechanics 2007 |
abstract_unstemmed |
Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing one another’s evolution. An alternative “meso” fracture mechanics is needed that treats microfailure activity while permitting fast and inexpensive predictive computations. This paper discusses the approach and experiments that elucidate and quantify failure physics on the micron level. “Rosetta Stone” experiments that isolate a damage mode, produce statistical distributions of damage features, and “freeze in” damage at various stages of development are described and illustrated. The observations and data lead to equations describing nucleation and growth of cracks, voids, and shear bands. The resulting mesomechanical material failure models link the microworld with the macroworld and can be used in continuum hydrocodes for fast, efficient simulations of dynamic fracture scenarios. © Society for Experimental Mechanics 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Rosetta Stone Experiments |
url |
https://doi.org/10.1007/s11340-006-9030-8 |
remote_bool |
false |
ppnlink |
129593990 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11340-006-9030-8 |
up_date |
2024-07-03T17:58:42.612Z |
_version_ |
1803581676703449088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058174216</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504082725.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11340-006-9030-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058174216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11340-006-9030-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shockey, D. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rosetta Stone Experiments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Society for Experimental Mechanics 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Dynamic failure events such as armor penetration and explosive fragmentation are too complex to be treated by classical single-crack continuum fracture mechanics. In such cases deformation and fracture result from multiple cracks, voids, and shear bands acting simultaneously and influencing one another’s evolution. An alternative “meso” fracture mechanics is needed that treats microfailure activity while permitting fast and inexpensive predictive computations. This paper discusses the approach and experiments that elucidate and quantify failure physics on the micron level. “Rosetta Stone” experiments that isolate a damage mode, produce statistical distributions of damage features, and “freeze in” damage at various stages of development are described and illustrated. The observations and data lead to equations describing nucleation and growth of cracks, voids, and shear bands. The resulting mesomechanical material failure models link the microworld with the macroworld and can be used in continuum hydrocodes for fast, efficient simulations of dynamic fracture scenarios.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic fracture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adiabatic shear bands</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mesomechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nucleation and growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Failure kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microfailure models</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental mechanics</subfield><subfield code="d">Springer US, 1961</subfield><subfield code="g">47(2007), 5 vom: 01. März, Seite 581-594</subfield><subfield code="w">(DE-627)129593990</subfield><subfield code="w">(DE-600)240480-1</subfield><subfield code="w">(DE-576)015086852</subfield><subfield code="x">0014-4851</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:5</subfield><subfield code="g">day:01</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:581-594</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11340-006-9030-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2007</subfield><subfield code="e">5</subfield><subfield code="b">01</subfield><subfield code="c">03</subfield><subfield code="h">581-594</subfield></datafield></record></collection>
|
score |
7.401636 |