Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials
Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly...
Ausführliche Beschreibung
Autor*in: |
Latourte, F. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Society for Experimental Mechanics 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Experimental mechanics - Springer US, 1961, 48(2007), 4 vom: 13. Okt., Seite 435-449 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2007 ; number:4 ; day:13 ; month:10 ; pages:435-449 |
Links: |
---|
DOI / URN: |
10.1007/s11340-007-9088-y |
---|
Katalog-ID: |
OLC2058174739 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2058174739 | ||
003 | DE-627 | ||
005 | 20230504082729.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11340-007-9088-y |2 doi | |
035 | |a (DE-627)OLC2058174739 | ||
035 | |a (DE-He213)s11340-007-9088-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
100 | 1 | |a Latourte, F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Society for Experimental Mechanics 2007 | ||
520 | |a Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly useful for obtaining fine and local descriptions of material properties. As they can measure complete thermal and mechanical fields, they can be used to identify several parameters of constitutive equations during a single deformation process using specifically designed heterogeneous tests (Grédiac, Composites: Part A 35:751–761, 2004). In Geymonat and Pagano (Meccanica 38:535–545, 2003), surface strain fields obtained by digital image correlation were used to identify the distribution of elastic parameters and stress fields by minimizing a given energy functional. In this paper, the previous method is improved through a relevant choice for stress approximation, and then extended to a wider class of elastoplastic materials. Its reliability is then checked through applications on simulated data obtained under small perturbation and plane stress assumptions. In particular, the robustness of the method with respect to measurement noise is studied on the basis of numerical data. An experimental application to heterogeneous material identification is finally proposed. | ||
650 | 4 | |a Inverse problem | |
650 | 4 | |a Elastoplasticity | |
650 | 4 | |a Field measurement | |
700 | 1 | |a Chrysochoos, A. |4 aut | |
700 | 1 | |a Pagano, S. |4 aut | |
700 | 1 | |a Wattrisse, B. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Experimental mechanics |d Springer US, 1961 |g 48(2007), 4 vom: 13. Okt., Seite 435-449 |w (DE-627)129593990 |w (DE-600)240480-1 |w (DE-576)015086852 |x 0014-4851 |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2007 |g number:4 |g day:13 |g month:10 |g pages:435-449 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11340-007-9088-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 48 |j 2007 |e 4 |b 13 |c 10 |h 435-449 |
author_variant |
f l fl a c ac s p sp b w bw |
---|---|
matchkey_str |
article:00144851:2007----::lsolsibhvoietfctofreeoeeu |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s11340-007-9088-y doi (DE-627)OLC2058174739 (DE-He213)s11340-007-9088-y-p DE-627 ger DE-627 rakwb eng 690 VZ Latourte, F. verfasserin aut Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics 2007 Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly useful for obtaining fine and local descriptions of material properties. As they can measure complete thermal and mechanical fields, they can be used to identify several parameters of constitutive equations during a single deformation process using specifically designed heterogeneous tests (Grédiac, Composites: Part A 35:751–761, 2004). In Geymonat and Pagano (Meccanica 38:535–545, 2003), surface strain fields obtained by digital image correlation were used to identify the distribution of elastic parameters and stress fields by minimizing a given energy functional. In this paper, the previous method is improved through a relevant choice for stress approximation, and then extended to a wider class of elastoplastic materials. Its reliability is then checked through applications on simulated data obtained under small perturbation and plane stress assumptions. In particular, the robustness of the method with respect to measurement noise is studied on the basis of numerical data. An experimental application to heterogeneous material identification is finally proposed. Inverse problem Elastoplasticity Field measurement Chrysochoos, A. aut Pagano, S. aut Wattrisse, B. aut Enthalten in Experimental mechanics Springer US, 1961 48(2007), 4 vom: 13. Okt., Seite 435-449 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:48 year:2007 number:4 day:13 month:10 pages:435-449 https://doi.org/10.1007/s11340-007-9088-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 AR 48 2007 4 13 10 435-449 |
spelling |
10.1007/s11340-007-9088-y doi (DE-627)OLC2058174739 (DE-He213)s11340-007-9088-y-p DE-627 ger DE-627 rakwb eng 690 VZ Latourte, F. verfasserin aut Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics 2007 Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly useful for obtaining fine and local descriptions of material properties. As they can measure complete thermal and mechanical fields, they can be used to identify several parameters of constitutive equations during a single deformation process using specifically designed heterogeneous tests (Grédiac, Composites: Part A 35:751–761, 2004). In Geymonat and Pagano (Meccanica 38:535–545, 2003), surface strain fields obtained by digital image correlation were used to identify the distribution of elastic parameters and stress fields by minimizing a given energy functional. In this paper, the previous method is improved through a relevant choice for stress approximation, and then extended to a wider class of elastoplastic materials. Its reliability is then checked through applications on simulated data obtained under small perturbation and plane stress assumptions. In particular, the robustness of the method with respect to measurement noise is studied on the basis of numerical data. An experimental application to heterogeneous material identification is finally proposed. Inverse problem Elastoplasticity Field measurement Chrysochoos, A. aut Pagano, S. aut Wattrisse, B. aut Enthalten in Experimental mechanics Springer US, 1961 48(2007), 4 vom: 13. Okt., Seite 435-449 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:48 year:2007 number:4 day:13 month:10 pages:435-449 https://doi.org/10.1007/s11340-007-9088-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 AR 48 2007 4 13 10 435-449 |
allfields_unstemmed |
10.1007/s11340-007-9088-y doi (DE-627)OLC2058174739 (DE-He213)s11340-007-9088-y-p DE-627 ger DE-627 rakwb eng 690 VZ Latourte, F. verfasserin aut Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics 2007 Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly useful for obtaining fine and local descriptions of material properties. As they can measure complete thermal and mechanical fields, they can be used to identify several parameters of constitutive equations during a single deformation process using specifically designed heterogeneous tests (Grédiac, Composites: Part A 35:751–761, 2004). In Geymonat and Pagano (Meccanica 38:535–545, 2003), surface strain fields obtained by digital image correlation were used to identify the distribution of elastic parameters and stress fields by minimizing a given energy functional. In this paper, the previous method is improved through a relevant choice for stress approximation, and then extended to a wider class of elastoplastic materials. Its reliability is then checked through applications on simulated data obtained under small perturbation and plane stress assumptions. In particular, the robustness of the method with respect to measurement noise is studied on the basis of numerical data. An experimental application to heterogeneous material identification is finally proposed. Inverse problem Elastoplasticity Field measurement Chrysochoos, A. aut Pagano, S. aut Wattrisse, B. aut Enthalten in Experimental mechanics Springer US, 1961 48(2007), 4 vom: 13. Okt., Seite 435-449 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:48 year:2007 number:4 day:13 month:10 pages:435-449 https://doi.org/10.1007/s11340-007-9088-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 AR 48 2007 4 13 10 435-449 |
allfieldsGer |
10.1007/s11340-007-9088-y doi (DE-627)OLC2058174739 (DE-He213)s11340-007-9088-y-p DE-627 ger DE-627 rakwb eng 690 VZ Latourte, F. verfasserin aut Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics 2007 Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly useful for obtaining fine and local descriptions of material properties. As they can measure complete thermal and mechanical fields, they can be used to identify several parameters of constitutive equations during a single deformation process using specifically designed heterogeneous tests (Grédiac, Composites: Part A 35:751–761, 2004). In Geymonat and Pagano (Meccanica 38:535–545, 2003), surface strain fields obtained by digital image correlation were used to identify the distribution of elastic parameters and stress fields by minimizing a given energy functional. In this paper, the previous method is improved through a relevant choice for stress approximation, and then extended to a wider class of elastoplastic materials. Its reliability is then checked through applications on simulated data obtained under small perturbation and plane stress assumptions. In particular, the robustness of the method with respect to measurement noise is studied on the basis of numerical data. An experimental application to heterogeneous material identification is finally proposed. Inverse problem Elastoplasticity Field measurement Chrysochoos, A. aut Pagano, S. aut Wattrisse, B. aut Enthalten in Experimental mechanics Springer US, 1961 48(2007), 4 vom: 13. Okt., Seite 435-449 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:48 year:2007 number:4 day:13 month:10 pages:435-449 https://doi.org/10.1007/s11340-007-9088-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 AR 48 2007 4 13 10 435-449 |
allfieldsSound |
10.1007/s11340-007-9088-y doi (DE-627)OLC2058174739 (DE-He213)s11340-007-9088-y-p DE-627 ger DE-627 rakwb eng 690 VZ Latourte, F. verfasserin aut Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Experimental Mechanics 2007 Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly useful for obtaining fine and local descriptions of material properties. As they can measure complete thermal and mechanical fields, they can be used to identify several parameters of constitutive equations during a single deformation process using specifically designed heterogeneous tests (Grédiac, Composites: Part A 35:751–761, 2004). In Geymonat and Pagano (Meccanica 38:535–545, 2003), surface strain fields obtained by digital image correlation were used to identify the distribution of elastic parameters and stress fields by minimizing a given energy functional. In this paper, the previous method is improved through a relevant choice for stress approximation, and then extended to a wider class of elastoplastic materials. Its reliability is then checked through applications on simulated data obtained under small perturbation and plane stress assumptions. In particular, the robustness of the method with respect to measurement noise is studied on the basis of numerical data. An experimental application to heterogeneous material identification is finally proposed. Inverse problem Elastoplasticity Field measurement Chrysochoos, A. aut Pagano, S. aut Wattrisse, B. aut Enthalten in Experimental mechanics Springer US, 1961 48(2007), 4 vom: 13. Okt., Seite 435-449 (DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 0014-4851 nnns volume:48 year:2007 number:4 day:13 month:10 pages:435-449 https://doi.org/10.1007/s11340-007-9088-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 AR 48 2007 4 13 10 435-449 |
language |
English |
source |
Enthalten in Experimental mechanics 48(2007), 4 vom: 13. Okt., Seite 435-449 volume:48 year:2007 number:4 day:13 month:10 pages:435-449 |
sourceStr |
Enthalten in Experimental mechanics 48(2007), 4 vom: 13. Okt., Seite 435-449 volume:48 year:2007 number:4 day:13 month:10 pages:435-449 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Inverse problem Elastoplasticity Field measurement |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Experimental mechanics |
authorswithroles_txt_mv |
Latourte, F. @@aut@@ Chrysochoos, A. @@aut@@ Pagano, S. @@aut@@ Wattrisse, B. @@aut@@ |
publishDateDaySort_date |
2007-10-13T00:00:00Z |
hierarchy_top_id |
129593990 |
dewey-sort |
3690 |
id |
OLC2058174739 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058174739</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504082729.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11340-007-9088-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058174739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11340-007-9088-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Latourte, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Society for Experimental Mechanics 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly useful for obtaining fine and local descriptions of material properties. As they can measure complete thermal and mechanical fields, they can be used to identify several parameters of constitutive equations during a single deformation process using specifically designed heterogeneous tests (Grédiac, Composites: Part A 35:751–761, 2004). In Geymonat and Pagano (Meccanica 38:535–545, 2003), surface strain fields obtained by digital image correlation were used to identify the distribution of elastic parameters and stress fields by minimizing a given energy functional. In this paper, the previous method is improved through a relevant choice for stress approximation, and then extended to a wider class of elastoplastic materials. Its reliability is then checked through applications on simulated data obtained under small perturbation and plane stress assumptions. In particular, the robustness of the method with respect to measurement noise is studied on the basis of numerical data. An experimental application to heterogeneous material identification is finally proposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elastoplasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field measurement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chrysochoos, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pagano, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wattrisse, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental mechanics</subfield><subfield code="d">Springer US, 1961</subfield><subfield code="g">48(2007), 4 vom: 13. Okt., Seite 435-449</subfield><subfield code="w">(DE-627)129593990</subfield><subfield code="w">(DE-600)240480-1</subfield><subfield code="w">(DE-576)015086852</subfield><subfield code="x">0014-4851</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:4</subfield><subfield code="g">day:13</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:435-449</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11340-007-9088-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2007</subfield><subfield code="e">4</subfield><subfield code="b">13</subfield><subfield code="c">10</subfield><subfield code="h">435-449</subfield></datafield></record></collection>
|
author |
Latourte, F. |
spellingShingle |
Latourte, F. ddc 690 misc Inverse problem misc Elastoplasticity misc Field measurement Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials |
authorStr |
Latourte, F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129593990 |
format |
Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0014-4851 |
topic_title |
690 VZ Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials Inverse problem Elastoplasticity Field measurement |
topic |
ddc 690 misc Inverse problem misc Elastoplasticity misc Field measurement |
topic_unstemmed |
ddc 690 misc Inverse problem misc Elastoplasticity misc Field measurement |
topic_browse |
ddc 690 misc Inverse problem misc Elastoplasticity misc Field measurement |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Experimental mechanics |
hierarchy_parent_id |
129593990 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Experimental mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129593990 (DE-600)240480-1 (DE-576)015086852 |
title |
Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials |
ctrlnum |
(DE-627)OLC2058174739 (DE-He213)s11340-007-9088-y-p |
title_full |
Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials |
author_sort |
Latourte, F. |
journal |
Experimental mechanics |
journalStr |
Experimental mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
435 |
author_browse |
Latourte, F. Chrysochoos, A. Pagano, S. Wattrisse, B. |
container_volume |
48 |
class |
690 VZ |
format_se |
Aufsätze |
author-letter |
Latourte, F. |
doi_str_mv |
10.1007/s11340-007-9088-y |
dewey-full |
690 |
title_sort |
elastoplastic behavior identification for heterogeneous loadings and materials |
title_auth |
Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials |
abstract |
Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly useful for obtaining fine and local descriptions of material properties. As they can measure complete thermal and mechanical fields, they can be used to identify several parameters of constitutive equations during a single deformation process using specifically designed heterogeneous tests (Grédiac, Composites: Part A 35:751–761, 2004). In Geymonat and Pagano (Meccanica 38:535–545, 2003), surface strain fields obtained by digital image correlation were used to identify the distribution of elastic parameters and stress fields by minimizing a given energy functional. In this paper, the previous method is improved through a relevant choice for stress approximation, and then extended to a wider class of elastoplastic materials. Its reliability is then checked through applications on simulated data obtained under small perturbation and plane stress assumptions. In particular, the robustness of the method with respect to measurement noise is studied on the basis of numerical data. An experimental application to heterogeneous material identification is finally proposed. © Society for Experimental Mechanics 2007 |
abstractGer |
Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly useful for obtaining fine and local descriptions of material properties. As they can measure complete thermal and mechanical fields, they can be used to identify several parameters of constitutive equations during a single deformation process using specifically designed heterogeneous tests (Grédiac, Composites: Part A 35:751–761, 2004). In Geymonat and Pagano (Meccanica 38:535–545, 2003), surface strain fields obtained by digital image correlation were used to identify the distribution of elastic parameters and stress fields by minimizing a given energy functional. In this paper, the previous method is improved through a relevant choice for stress approximation, and then extended to a wider class of elastoplastic materials. Its reliability is then checked through applications on simulated data obtained under small perturbation and plane stress assumptions. In particular, the robustness of the method with respect to measurement noise is studied on the basis of numerical data. An experimental application to heterogeneous material identification is finally proposed. © Society for Experimental Mechanics 2007 |
abstract_unstemmed |
Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly useful for obtaining fine and local descriptions of material properties. As they can measure complete thermal and mechanical fields, they can be used to identify several parameters of constitutive equations during a single deformation process using specifically designed heterogeneous tests (Grédiac, Composites: Part A 35:751–761, 2004). In Geymonat and Pagano (Meccanica 38:535–545, 2003), surface strain fields obtained by digital image correlation were used to identify the distribution of elastic parameters and stress fields by minimizing a given energy functional. In this paper, the previous method is improved through a relevant choice for stress approximation, and then extended to a wider class of elastoplastic materials. Its reliability is then checked through applications on simulated data obtained under small perturbation and plane stress assumptions. In particular, the robustness of the method with respect to measurement noise is studied on the basis of numerical data. An experimental application to heterogeneous material identification is finally proposed. © Society for Experimental Mechanics 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_23 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2057 GBV_ILN_4317 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials |
url |
https://doi.org/10.1007/s11340-007-9088-y |
remote_bool |
false |
author2 |
Chrysochoos, A. Pagano, S. Wattrisse, B. |
author2Str |
Chrysochoos, A. Pagano, S. Wattrisse, B. |
ppnlink |
129593990 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11340-007-9088-y |
up_date |
2024-07-03T17:58:50.478Z |
_version_ |
1803581684951547904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058174739</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504082729.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11340-007-9088-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058174739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11340-007-9088-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Latourte, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Society for Experimental Mechanics 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Image processing techniques provide access to full field measurements of different thermomechanical data (strain; strain-rate, Wattrisse et al., J Exp Mech, 41:29–38, 2001; temperature, Chrysochoos and Louche, Int J Eng Sci 38:1759–1788, 2000 ...). These techniques have become increasingly useful for obtaining fine and local descriptions of material properties. As they can measure complete thermal and mechanical fields, they can be used to identify several parameters of constitutive equations during a single deformation process using specifically designed heterogeneous tests (Grédiac, Composites: Part A 35:751–761, 2004). In Geymonat and Pagano (Meccanica 38:535–545, 2003), surface strain fields obtained by digital image correlation were used to identify the distribution of elastic parameters and stress fields by minimizing a given energy functional. In this paper, the previous method is improved through a relevant choice for stress approximation, and then extended to a wider class of elastoplastic materials. Its reliability is then checked through applications on simulated data obtained under small perturbation and plane stress assumptions. In particular, the robustness of the method with respect to measurement noise is studied on the basis of numerical data. An experimental application to heterogeneous material identification is finally proposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elastoplasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field measurement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chrysochoos, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pagano, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wattrisse, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental mechanics</subfield><subfield code="d">Springer US, 1961</subfield><subfield code="g">48(2007), 4 vom: 13. Okt., Seite 435-449</subfield><subfield code="w">(DE-627)129593990</subfield><subfield code="w">(DE-600)240480-1</subfield><subfield code="w">(DE-576)015086852</subfield><subfield code="x">0014-4851</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:4</subfield><subfield code="g">day:13</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:435-449</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11340-007-9088-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2007</subfield><subfield code="e">4</subfield><subfield code="b">13</subfield><subfield code="c">10</subfield><subfield code="h">435-449</subfield></datafield></record></collection>
|
score |
7.401869 |