Forecasting river flow using nonlinear dynamics
Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and l...
Ausführliche Beschreibung
Autor*in: |
Kember, G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1993 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 1993 |
---|
Übergeordnetes Werk: |
Enthalten in: Stochastic hydrology and hydraulics - Springer-Verlag, 1987, 7(1993), 3 vom: Sept., Seite 205-212 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:1993 ; number:3 ; month:09 ; pages:205-212 |
Links: |
---|
DOI / URN: |
10.1007/BF01585599 |
---|
Katalog-ID: |
OLC2058726618 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2058726618 | ||
003 | DE-627 | ||
005 | 20230502110014.0 | ||
007 | tu | ||
008 | 200820s1993 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01585599 |2 doi | |
035 | |a (DE-627)OLC2058726618 | ||
035 | |a (DE-He213)BF01585599-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
100 | 1 | |a Kember, G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Forecasting river flow using nonlinear dynamics |
264 | 1 | |c 1993 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1993 | ||
520 | |a Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts. | ||
650 | 4 | |a Waste Water | |
650 | 4 | |a Water Management | |
650 | 4 | |a Water Pollution | |
650 | 4 | |a Stochastic Process | |
650 | 4 | |a Nonlinear Dynamic | |
700 | 1 | |a Flower, A. C. |4 aut | |
700 | 1 | |a Holubeshen, J. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Stochastic hydrology and hydraulics |d Springer-Verlag, 1987 |g 7(1993), 3 vom: Sept., Seite 205-212 |w (DE-627)129226203 |w (DE-600)56969-0 |w (DE-576)01445839X |x 0931-1955 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:1993 |g number:3 |g month:09 |g pages:205-212 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01585599 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 1993 |e 3 |c 09 |h 205-212 |
author_variant |
g k gk a c f ac acf j h jh |
---|---|
matchkey_str |
article:09311955:1993----::oeatnrvrlwsnnni |
hierarchy_sort_str |
1993 |
publishDate |
1993 |
allfields |
10.1007/BF01585599 doi (DE-627)OLC2058726618 (DE-He213)BF01585599-p DE-627 ger DE-627 rakwb eng 550 VZ Kember, G. verfasserin aut Forecasting river flow using nonlinear dynamics 1993 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1993 Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts. Waste Water Water Management Water Pollution Stochastic Process Nonlinear Dynamic Flower, A. C. aut Holubeshen, J. aut Enthalten in Stochastic hydrology and hydraulics Springer-Verlag, 1987 7(1993), 3 vom: Sept., Seite 205-212 (DE-627)129226203 (DE-600)56969-0 (DE-576)01445839X 0931-1955 nnns volume:7 year:1993 number:3 month:09 pages:205-212 https://doi.org/10.1007/BF01585599 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4700 AR 7 1993 3 09 205-212 |
spelling |
10.1007/BF01585599 doi (DE-627)OLC2058726618 (DE-He213)BF01585599-p DE-627 ger DE-627 rakwb eng 550 VZ Kember, G. verfasserin aut Forecasting river flow using nonlinear dynamics 1993 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1993 Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts. Waste Water Water Management Water Pollution Stochastic Process Nonlinear Dynamic Flower, A. C. aut Holubeshen, J. aut Enthalten in Stochastic hydrology and hydraulics Springer-Verlag, 1987 7(1993), 3 vom: Sept., Seite 205-212 (DE-627)129226203 (DE-600)56969-0 (DE-576)01445839X 0931-1955 nnns volume:7 year:1993 number:3 month:09 pages:205-212 https://doi.org/10.1007/BF01585599 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4700 AR 7 1993 3 09 205-212 |
allfields_unstemmed |
10.1007/BF01585599 doi (DE-627)OLC2058726618 (DE-He213)BF01585599-p DE-627 ger DE-627 rakwb eng 550 VZ Kember, G. verfasserin aut Forecasting river flow using nonlinear dynamics 1993 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1993 Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts. Waste Water Water Management Water Pollution Stochastic Process Nonlinear Dynamic Flower, A. C. aut Holubeshen, J. aut Enthalten in Stochastic hydrology and hydraulics Springer-Verlag, 1987 7(1993), 3 vom: Sept., Seite 205-212 (DE-627)129226203 (DE-600)56969-0 (DE-576)01445839X 0931-1955 nnns volume:7 year:1993 number:3 month:09 pages:205-212 https://doi.org/10.1007/BF01585599 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4700 AR 7 1993 3 09 205-212 |
allfieldsGer |
10.1007/BF01585599 doi (DE-627)OLC2058726618 (DE-He213)BF01585599-p DE-627 ger DE-627 rakwb eng 550 VZ Kember, G. verfasserin aut Forecasting river flow using nonlinear dynamics 1993 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1993 Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts. Waste Water Water Management Water Pollution Stochastic Process Nonlinear Dynamic Flower, A. C. aut Holubeshen, J. aut Enthalten in Stochastic hydrology and hydraulics Springer-Verlag, 1987 7(1993), 3 vom: Sept., Seite 205-212 (DE-627)129226203 (DE-600)56969-0 (DE-576)01445839X 0931-1955 nnns volume:7 year:1993 number:3 month:09 pages:205-212 https://doi.org/10.1007/BF01585599 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4700 AR 7 1993 3 09 205-212 |
allfieldsSound |
10.1007/BF01585599 doi (DE-627)OLC2058726618 (DE-He213)BF01585599-p DE-627 ger DE-627 rakwb eng 550 VZ Kember, G. verfasserin aut Forecasting river flow using nonlinear dynamics 1993 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1993 Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts. Waste Water Water Management Water Pollution Stochastic Process Nonlinear Dynamic Flower, A. C. aut Holubeshen, J. aut Enthalten in Stochastic hydrology and hydraulics Springer-Verlag, 1987 7(1993), 3 vom: Sept., Seite 205-212 (DE-627)129226203 (DE-600)56969-0 (DE-576)01445839X 0931-1955 nnns volume:7 year:1993 number:3 month:09 pages:205-212 https://doi.org/10.1007/BF01585599 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4700 AR 7 1993 3 09 205-212 |
language |
English |
source |
Enthalten in Stochastic hydrology and hydraulics 7(1993), 3 vom: Sept., Seite 205-212 volume:7 year:1993 number:3 month:09 pages:205-212 |
sourceStr |
Enthalten in Stochastic hydrology and hydraulics 7(1993), 3 vom: Sept., Seite 205-212 volume:7 year:1993 number:3 month:09 pages:205-212 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Waste Water Water Management Water Pollution Stochastic Process Nonlinear Dynamic |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Stochastic hydrology and hydraulics |
authorswithroles_txt_mv |
Kember, G. @@aut@@ Flower, A. C. @@aut@@ Holubeshen, J. @@aut@@ |
publishDateDaySort_date |
1993-09-01T00:00:00Z |
hierarchy_top_id |
129226203 |
dewey-sort |
3550 |
id |
OLC2058726618 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058726618</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502110014.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1993 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01585599</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058726618</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01585599-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kember, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forecasting river flow using nonlinear dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1993</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1993</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waste Water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water Pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic Process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Dynamic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flower, A. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holubeshen, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Stochastic hydrology and hydraulics</subfield><subfield code="d">Springer-Verlag, 1987</subfield><subfield code="g">7(1993), 3 vom: Sept., Seite 205-212</subfield><subfield code="w">(DE-627)129226203</subfield><subfield code="w">(DE-600)56969-0</subfield><subfield code="w">(DE-576)01445839X</subfield><subfield code="x">0931-1955</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:1993</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:205-212</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01585599</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">1993</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">205-212</subfield></datafield></record></collection>
|
author |
Kember, G. |
spellingShingle |
Kember, G. ddc 550 misc Waste Water misc Water Management misc Water Pollution misc Stochastic Process misc Nonlinear Dynamic Forecasting river flow using nonlinear dynamics |
authorStr |
Kember, G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129226203 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0931-1955 |
topic_title |
550 VZ Forecasting river flow using nonlinear dynamics Waste Water Water Management Water Pollution Stochastic Process Nonlinear Dynamic |
topic |
ddc 550 misc Waste Water misc Water Management misc Water Pollution misc Stochastic Process misc Nonlinear Dynamic |
topic_unstemmed |
ddc 550 misc Waste Water misc Water Management misc Water Pollution misc Stochastic Process misc Nonlinear Dynamic |
topic_browse |
ddc 550 misc Waste Water misc Water Management misc Water Pollution misc Stochastic Process misc Nonlinear Dynamic |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Stochastic hydrology and hydraulics |
hierarchy_parent_id |
129226203 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Stochastic hydrology and hydraulics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129226203 (DE-600)56969-0 (DE-576)01445839X |
title |
Forecasting river flow using nonlinear dynamics |
ctrlnum |
(DE-627)OLC2058726618 (DE-He213)BF01585599-p |
title_full |
Forecasting river flow using nonlinear dynamics |
author_sort |
Kember, G. |
journal |
Stochastic hydrology and hydraulics |
journalStr |
Stochastic hydrology and hydraulics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1993 |
contenttype_str_mv |
txt |
container_start_page |
205 |
author_browse |
Kember, G. Flower, A. C. Holubeshen, J. |
container_volume |
7 |
class |
550 VZ |
format_se |
Aufsätze |
author-letter |
Kember, G. |
doi_str_mv |
10.1007/BF01585599 |
dewey-full |
550 |
title_sort |
forecasting river flow using nonlinear dynamics |
title_auth |
Forecasting river flow using nonlinear dynamics |
abstract |
Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts. © Springer-Verlag 1993 |
abstractGer |
Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts. © Springer-Verlag 1993 |
abstract_unstemmed |
Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts. © Springer-Verlag 1993 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Forecasting river flow using nonlinear dynamics |
url |
https://doi.org/10.1007/BF01585599 |
remote_bool |
false |
author2 |
Flower, A. C. Holubeshen, J. |
author2Str |
Flower, A. C. Holubeshen, J. |
ppnlink |
129226203 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01585599 |
up_date |
2024-07-03T19:57:51.644Z |
_version_ |
1803589173006827520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058726618</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502110014.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1993 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01585599</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058726618</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01585599-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kember, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forecasting river flow using nonlinear dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1993</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1993</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waste Water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water Pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic Process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Dynamic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flower, A. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holubeshen, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Stochastic hydrology and hydraulics</subfield><subfield code="d">Springer-Verlag, 1987</subfield><subfield code="g">7(1993), 3 vom: Sept., Seite 205-212</subfield><subfield code="w">(DE-627)129226203</subfield><subfield code="w">(DE-600)56969-0</subfield><subfield code="w">(DE-576)01445839X</subfield><subfield code="x">0931-1955</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:1993</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:205-212</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01585599</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">1993</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">205-212</subfield></datafield></record></collection>
|
score |
7.4015055 |