Functional maximum-likelihood estimation of ARH(p) models
Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from...
Ausführliche Beschreibung
Autor*in: |
Ruiz-Medina, M. D. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
Autoregressive Hilbertian models |
---|
Anmerkung: |
© Springer-Verlag 2009 |
---|
Übergeordnetes Werk: |
Enthalten in: Stochastic environmental research and risk assessment - Springer-Verlag, 1999, 24(2009), 1 vom: 24. Feb., Seite 131-146 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2009 ; number:1 ; day:24 ; month:02 ; pages:131-146 |
Links: |
---|
DOI / URN: |
10.1007/s00477-009-0306-2 |
---|
Katalog-ID: |
OLC2058732804 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2058732804 | ||
003 | DE-627 | ||
005 | 20230502110048.0 | ||
007 | tu | ||
008 | 200820s2009 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00477-009-0306-2 |2 doi | |
035 | |a (DE-627)OLC2058732804 | ||
035 | |a (DE-He213)s00477-009-0306-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |q VZ |
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 43.03$jMethoden der Umweltforschung und des Umweltschutzes |2 bkl | ||
084 | |a 38.85$jHydrologie: Allgemeines |2 bkl | ||
084 | |a 58.50$jUmwelttechnik: Allgemeines |2 bkl | ||
084 | |a 52.23$jFluidtechnik |2 bkl | ||
100 | 1 | |a Ruiz-Medina, M. D. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Functional maximum-likelihood estimation of ARH(p) models |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2009 | ||
520 | |a Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition. | ||
650 | 4 | |a Autoregressive Hilbertian models | |
650 | 4 | |a Dimension reduction | |
650 | 4 | |a Finite-dimensional approximation | |
650 | 4 | |a Functional parameters | |
650 | 4 | |a Maximum-likelihood estimation | |
650 | 4 | |a Singular value decomposition | |
650 | 4 | |a Spatial functional data sequence | |
700 | 1 | |a Salmerón, R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Stochastic environmental research and risk assessment |d Springer-Verlag, 1999 |g 24(2009), 1 vom: 24. Feb., Seite 131-146 |w (DE-627)269538283 |w (DE-600)1475430-7 |w (DE-576)077885473 |x 1436-3240 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2009 |g number:1 |g day:24 |g month:02 |g pages:131-146 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00477-009-0306-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 43.03$jMethoden der Umweltforschung und des Umweltschutzes |q VZ |0 106416952 |0 (DE-625)106416952 |
936 | b | k | |a 38.85$jHydrologie: Allgemeines |q VZ |0 106421905 |0 (DE-625)106421905 |
936 | b | k | |a 58.50$jUmwelttechnik: Allgemeines |q VZ |0 10641707X |0 (DE-625)10641707X |
936 | b | k | |a 52.23$jFluidtechnik |q VZ |0 106419870 |0 (DE-625)106419870 |
951 | |a AR | ||
952 | |d 24 |j 2009 |e 1 |b 24 |c 02 |h 131-146 |
author_variant |
m d r m mdr mdrm r s rs |
---|---|
matchkey_str |
article:14363240:2009----::ucinlaiulklhoetmto |
hierarchy_sort_str |
2009 |
bklnumber |
43.03$jMethoden der Umweltforschung und des Umweltschutzes 38.85$jHydrologie: Allgemeines 58.50$jUmwelttechnik: Allgemeines 52.23$jFluidtechnik |
publishDate |
2009 |
allfields |
10.1007/s00477-009-0306-2 doi (DE-627)OLC2058732804 (DE-He213)s00477-009-0306-2-p DE-627 ger DE-627 rakwb eng 333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Ruiz-Medina, M. D. verfasserin aut Functional maximum-likelihood estimation of ARH(p) models 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition. Autoregressive Hilbertian models Dimension reduction Finite-dimensional approximation Functional parameters Maximum-likelihood estimation Singular value decomposition Spatial functional data sequence Salmerón, R. aut Enthalten in Stochastic environmental research and risk assessment Springer-Verlag, 1999 24(2009), 1 vom: 24. Feb., Seite 131-146 (DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 1436-3240 nnns volume:24 year:2009 number:1 day:24 month:02 pages:131-146 https://doi.org/10.1007/s00477-009-0306-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4700 43.03$jMethoden der Umweltforschung und des Umweltschutzes VZ 106416952 (DE-625)106416952 38.85$jHydrologie: Allgemeines VZ 106421905 (DE-625)106421905 58.50$jUmwelttechnik: Allgemeines VZ 10641707X (DE-625)10641707X 52.23$jFluidtechnik VZ 106419870 (DE-625)106419870 AR 24 2009 1 24 02 131-146 |
spelling |
10.1007/s00477-009-0306-2 doi (DE-627)OLC2058732804 (DE-He213)s00477-009-0306-2-p DE-627 ger DE-627 rakwb eng 333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Ruiz-Medina, M. D. verfasserin aut Functional maximum-likelihood estimation of ARH(p) models 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition. Autoregressive Hilbertian models Dimension reduction Finite-dimensional approximation Functional parameters Maximum-likelihood estimation Singular value decomposition Spatial functional data sequence Salmerón, R. aut Enthalten in Stochastic environmental research and risk assessment Springer-Verlag, 1999 24(2009), 1 vom: 24. Feb., Seite 131-146 (DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 1436-3240 nnns volume:24 year:2009 number:1 day:24 month:02 pages:131-146 https://doi.org/10.1007/s00477-009-0306-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4700 43.03$jMethoden der Umweltforschung und des Umweltschutzes VZ 106416952 (DE-625)106416952 38.85$jHydrologie: Allgemeines VZ 106421905 (DE-625)106421905 58.50$jUmwelttechnik: Allgemeines VZ 10641707X (DE-625)10641707X 52.23$jFluidtechnik VZ 106419870 (DE-625)106419870 AR 24 2009 1 24 02 131-146 |
allfields_unstemmed |
10.1007/s00477-009-0306-2 doi (DE-627)OLC2058732804 (DE-He213)s00477-009-0306-2-p DE-627 ger DE-627 rakwb eng 333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Ruiz-Medina, M. D. verfasserin aut Functional maximum-likelihood estimation of ARH(p) models 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition. Autoregressive Hilbertian models Dimension reduction Finite-dimensional approximation Functional parameters Maximum-likelihood estimation Singular value decomposition Spatial functional data sequence Salmerón, R. aut Enthalten in Stochastic environmental research and risk assessment Springer-Verlag, 1999 24(2009), 1 vom: 24. Feb., Seite 131-146 (DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 1436-3240 nnns volume:24 year:2009 number:1 day:24 month:02 pages:131-146 https://doi.org/10.1007/s00477-009-0306-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4700 43.03$jMethoden der Umweltforschung und des Umweltschutzes VZ 106416952 (DE-625)106416952 38.85$jHydrologie: Allgemeines VZ 106421905 (DE-625)106421905 58.50$jUmwelttechnik: Allgemeines VZ 10641707X (DE-625)10641707X 52.23$jFluidtechnik VZ 106419870 (DE-625)106419870 AR 24 2009 1 24 02 131-146 |
allfieldsGer |
10.1007/s00477-009-0306-2 doi (DE-627)OLC2058732804 (DE-He213)s00477-009-0306-2-p DE-627 ger DE-627 rakwb eng 333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Ruiz-Medina, M. D. verfasserin aut Functional maximum-likelihood estimation of ARH(p) models 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition. Autoregressive Hilbertian models Dimension reduction Finite-dimensional approximation Functional parameters Maximum-likelihood estimation Singular value decomposition Spatial functional data sequence Salmerón, R. aut Enthalten in Stochastic environmental research and risk assessment Springer-Verlag, 1999 24(2009), 1 vom: 24. Feb., Seite 131-146 (DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 1436-3240 nnns volume:24 year:2009 number:1 day:24 month:02 pages:131-146 https://doi.org/10.1007/s00477-009-0306-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4700 43.03$jMethoden der Umweltforschung und des Umweltschutzes VZ 106416952 (DE-625)106416952 38.85$jHydrologie: Allgemeines VZ 106421905 (DE-625)106421905 58.50$jUmwelttechnik: Allgemeines VZ 10641707X (DE-625)10641707X 52.23$jFluidtechnik VZ 106419870 (DE-625)106419870 AR 24 2009 1 24 02 131-146 |
allfieldsSound |
10.1007/s00477-009-0306-2 doi (DE-627)OLC2058732804 (DE-He213)s00477-009-0306-2-p DE-627 ger DE-627 rakwb eng 333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Ruiz-Medina, M. D. verfasserin aut Functional maximum-likelihood estimation of ARH(p) models 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition. Autoregressive Hilbertian models Dimension reduction Finite-dimensional approximation Functional parameters Maximum-likelihood estimation Singular value decomposition Spatial functional data sequence Salmerón, R. aut Enthalten in Stochastic environmental research and risk assessment Springer-Verlag, 1999 24(2009), 1 vom: 24. Feb., Seite 131-146 (DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 1436-3240 nnns volume:24 year:2009 number:1 day:24 month:02 pages:131-146 https://doi.org/10.1007/s00477-009-0306-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4700 43.03$jMethoden der Umweltforschung und des Umweltschutzes VZ 106416952 (DE-625)106416952 38.85$jHydrologie: Allgemeines VZ 106421905 (DE-625)106421905 58.50$jUmwelttechnik: Allgemeines VZ 10641707X (DE-625)10641707X 52.23$jFluidtechnik VZ 106419870 (DE-625)106419870 AR 24 2009 1 24 02 131-146 |
language |
English |
source |
Enthalten in Stochastic environmental research and risk assessment 24(2009), 1 vom: 24. Feb., Seite 131-146 volume:24 year:2009 number:1 day:24 month:02 pages:131-146 |
sourceStr |
Enthalten in Stochastic environmental research and risk assessment 24(2009), 1 vom: 24. Feb., Seite 131-146 volume:24 year:2009 number:1 day:24 month:02 pages:131-146 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Autoregressive Hilbertian models Dimension reduction Finite-dimensional approximation Functional parameters Maximum-likelihood estimation Singular value decomposition Spatial functional data sequence |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Stochastic environmental research and risk assessment |
authorswithroles_txt_mv |
Ruiz-Medina, M. D. @@aut@@ Salmerón, R. @@aut@@ |
publishDateDaySort_date |
2009-02-24T00:00:00Z |
hierarchy_top_id |
269538283 |
dewey-sort |
3333.7 |
id |
OLC2058732804 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058732804</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502110048.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00477-009-0306-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058732804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00477-009-0306-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.03$jMethoden der Umweltforschung und des Umweltschutzes</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85$jHydrologie: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50$jUmwelttechnik: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.23$jFluidtechnik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ruiz-Medina, M. D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functional maximum-likelihood estimation of ARH(p) models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autoregressive Hilbertian models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimension reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-dimensional approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum-likelihood estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular value decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial functional data sequence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salmerón, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Stochastic environmental research and risk assessment</subfield><subfield code="d">Springer-Verlag, 1999</subfield><subfield code="g">24(2009), 1 vom: 24. Feb., Seite 131-146</subfield><subfield code="w">(DE-627)269538283</subfield><subfield code="w">(DE-600)1475430-7</subfield><subfield code="w">(DE-576)077885473</subfield><subfield code="x">1436-3240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:131-146</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00477-009-0306-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.03$jMethoden der Umweltforschung und des Umweltschutzes</subfield><subfield code="q">VZ</subfield><subfield code="0">106416952</subfield><subfield code="0">(DE-625)106416952</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85$jHydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">106421905</subfield><subfield code="0">(DE-625)106421905</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50$jUmwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">10641707X</subfield><subfield code="0">(DE-625)10641707X</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.23$jFluidtechnik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419870</subfield><subfield code="0">(DE-625)106419870</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield><subfield code="h">131-146</subfield></datafield></record></collection>
|
author |
Ruiz-Medina, M. D. |
spellingShingle |
Ruiz-Medina, M. D. ddc 333.7 ddc 550 bkl 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik misc Autoregressive Hilbertian models misc Dimension reduction misc Finite-dimensional approximation misc Functional parameters misc Maximum-likelihood estimation misc Singular value decomposition misc Spatial functional data sequence Functional maximum-likelihood estimation of ARH(p) models |
authorStr |
Ruiz-Medina, M. D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269538283 |
format |
Article |
dewey-ones |
333 - Economics of land & energy 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1436-3240 |
topic_title |
333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Functional maximum-likelihood estimation of ARH(p) models Autoregressive Hilbertian models Dimension reduction Finite-dimensional approximation Functional parameters Maximum-likelihood estimation Singular value decomposition Spatial functional data sequence |
topic |
ddc 333.7 ddc 550 bkl 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik misc Autoregressive Hilbertian models misc Dimension reduction misc Finite-dimensional approximation misc Functional parameters misc Maximum-likelihood estimation misc Singular value decomposition misc Spatial functional data sequence |
topic_unstemmed |
ddc 333.7 ddc 550 bkl 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik misc Autoregressive Hilbertian models misc Dimension reduction misc Finite-dimensional approximation misc Functional parameters misc Maximum-likelihood estimation misc Singular value decomposition misc Spatial functional data sequence |
topic_browse |
ddc 333.7 ddc 550 bkl 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik misc Autoregressive Hilbertian models misc Dimension reduction misc Finite-dimensional approximation misc Functional parameters misc Maximum-likelihood estimation misc Singular value decomposition misc Spatial functional data sequence |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Stochastic environmental research and risk assessment |
hierarchy_parent_id |
269538283 |
dewey-tens |
330 - Economics 550 - Earth sciences & geology |
hierarchy_top_title |
Stochastic environmental research and risk assessment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 |
title |
Functional maximum-likelihood estimation of ARH(p) models |
ctrlnum |
(DE-627)OLC2058732804 (DE-He213)s00477-009-0306-2-p |
title_full |
Functional maximum-likelihood estimation of ARH(p) models |
author_sort |
Ruiz-Medina, M. D. |
journal |
Stochastic environmental research and risk assessment |
journalStr |
Stochastic environmental research and risk assessment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
131 |
author_browse |
Ruiz-Medina, M. D. Salmerón, R. |
container_volume |
24 |
class |
333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl |
format_se |
Aufsätze |
author-letter |
Ruiz-Medina, M. D. |
doi_str_mv |
10.1007/s00477-009-0306-2 |
normlink |
106416952 106421905 10641707X 106419870 |
normlink_prefix_str_mv |
106416952 (DE-625)106416952 106421905 (DE-625)106421905 10641707X (DE-625)10641707X 106419870 (DE-625)106419870 |
dewey-full |
333.7 550 |
title_sort |
functional maximum-likelihood estimation of arh(p) models |
title_auth |
Functional maximum-likelihood estimation of ARH(p) models |
abstract |
Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition. © Springer-Verlag 2009 |
abstractGer |
Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition. © Springer-Verlag 2009 |
abstract_unstemmed |
Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition. © Springer-Verlag 2009 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Functional maximum-likelihood estimation of ARH(p) models |
url |
https://doi.org/10.1007/s00477-009-0306-2 |
remote_bool |
false |
author2 |
Salmerón, R. |
author2Str |
Salmerón, R. |
ppnlink |
269538283 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00477-009-0306-2 |
up_date |
2024-07-03T19:59:32.692Z |
_version_ |
1803589278963335168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058732804</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502110048.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00477-009-0306-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058732804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00477-009-0306-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.03$jMethoden der Umweltforschung und des Umweltschutzes</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85$jHydrologie: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50$jUmwelttechnik: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.23$jFluidtechnik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ruiz-Medina, M. D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functional maximum-likelihood estimation of ARH(p) models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autoregressive Hilbertian models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimension reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-dimensional approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum-likelihood estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular value decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial functional data sequence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salmerón, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Stochastic environmental research and risk assessment</subfield><subfield code="d">Springer-Verlag, 1999</subfield><subfield code="g">24(2009), 1 vom: 24. Feb., Seite 131-146</subfield><subfield code="w">(DE-627)269538283</subfield><subfield code="w">(DE-600)1475430-7</subfield><subfield code="w">(DE-576)077885473</subfield><subfield code="x">1436-3240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:131-146</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00477-009-0306-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.03$jMethoden der Umweltforschung und des Umweltschutzes</subfield><subfield code="q">VZ</subfield><subfield code="0">106416952</subfield><subfield code="0">(DE-625)106416952</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85$jHydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">106421905</subfield><subfield code="0">(DE-625)106421905</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50$jUmwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">10641707X</subfield><subfield code="0">(DE-625)10641707X</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.23$jFluidtechnik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419870</subfield><subfield code="0">(DE-625)106419870</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield><subfield code="h">131-146</subfield></datafield></record></collection>
|
score |
7.39933 |