Differential equations with fixed critical points
Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points.
Autor*in: |
Bureau, F. J. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1964 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Nicola Zanichelli Editore 1964 |
---|
Übergeordnetes Werk: |
Enthalten in: Annali di matematica pura ed applicata - Springer-Verlag, 1858, 64(1964), 1 vom: Dez., Seite 229-364 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:1964 ; number:1 ; month:12 ; pages:229-364 |
Links: |
---|
DOI / URN: |
10.1007/BF02410054 |
---|
Katalog-ID: |
OLC2058831551 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2058831551 | ||
003 | DE-627 | ||
005 | 20230502180013.0 | ||
007 | tu | ||
008 | 200820s1964 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02410054 |2 doi | |
035 | |a (DE-627)OLC2058831551 | ||
035 | |a (DE-He213)BF02410054-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Bureau, F. J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Differential equations with fixed critical points |
264 | 1 | |c 1964 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Nicola Zanichelli Editore 1964 | ||
520 | |a Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points. | ||
650 | 4 | |a Differential Equation | |
650 | 4 | |a Rational Function | |
650 | 4 | |a Analytic Coefficient | |
650 | 4 | |a Parametric Critical Point | |
650 | 4 | |a Fixed Critical Point | |
773 | 0 | 8 | |i Enthalten in |t Annali di matematica pura ed applicata |d Springer-Verlag, 1858 |g 64(1964), 1 vom: Dez., Seite 229-364 |w (DE-627)129514764 |w (DE-600)210986-4 |w (DE-576)014924102 |x 0373-3114 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:1964 |g number:1 |g month:12 |g pages:229-364 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02410054 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_179 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
951 | |a AR | ||
952 | |d 64 |j 1964 |e 1 |c 12 |h 229-364 |
author_variant |
f j b fj fjb |
---|---|
matchkey_str |
article:03733114:1964----::ifrnilqainwtfxdr |
hierarchy_sort_str |
1964 |
publishDate |
1964 |
allfields |
10.1007/BF02410054 doi (DE-627)OLC2058831551 (DE-He213)BF02410054-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bureau, F. J. verfasserin aut Differential equations with fixed critical points 1964 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Nicola Zanichelli Editore 1964 Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points. Differential Equation Rational Function Analytic Coefficient Parametric Critical Point Fixed Critical Point Enthalten in Annali di matematica pura ed applicata Springer-Verlag, 1858 64(1964), 1 vom: Dez., Seite 229-364 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:64 year:1964 number:1 month:12 pages:229-364 https://doi.org/10.1007/BF02410054 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4323 GBV_ILN_4325 AR 64 1964 1 12 229-364 |
spelling |
10.1007/BF02410054 doi (DE-627)OLC2058831551 (DE-He213)BF02410054-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bureau, F. J. verfasserin aut Differential equations with fixed critical points 1964 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Nicola Zanichelli Editore 1964 Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points. Differential Equation Rational Function Analytic Coefficient Parametric Critical Point Fixed Critical Point Enthalten in Annali di matematica pura ed applicata Springer-Verlag, 1858 64(1964), 1 vom: Dez., Seite 229-364 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:64 year:1964 number:1 month:12 pages:229-364 https://doi.org/10.1007/BF02410054 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4323 GBV_ILN_4325 AR 64 1964 1 12 229-364 |
allfields_unstemmed |
10.1007/BF02410054 doi (DE-627)OLC2058831551 (DE-He213)BF02410054-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bureau, F. J. verfasserin aut Differential equations with fixed critical points 1964 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Nicola Zanichelli Editore 1964 Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points. Differential Equation Rational Function Analytic Coefficient Parametric Critical Point Fixed Critical Point Enthalten in Annali di matematica pura ed applicata Springer-Verlag, 1858 64(1964), 1 vom: Dez., Seite 229-364 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:64 year:1964 number:1 month:12 pages:229-364 https://doi.org/10.1007/BF02410054 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4323 GBV_ILN_4325 AR 64 1964 1 12 229-364 |
allfieldsGer |
10.1007/BF02410054 doi (DE-627)OLC2058831551 (DE-He213)BF02410054-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bureau, F. J. verfasserin aut Differential equations with fixed critical points 1964 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Nicola Zanichelli Editore 1964 Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points. Differential Equation Rational Function Analytic Coefficient Parametric Critical Point Fixed Critical Point Enthalten in Annali di matematica pura ed applicata Springer-Verlag, 1858 64(1964), 1 vom: Dez., Seite 229-364 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:64 year:1964 number:1 month:12 pages:229-364 https://doi.org/10.1007/BF02410054 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4323 GBV_ILN_4325 AR 64 1964 1 12 229-364 |
allfieldsSound |
10.1007/BF02410054 doi (DE-627)OLC2058831551 (DE-He213)BF02410054-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bureau, F. J. verfasserin aut Differential equations with fixed critical points 1964 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Nicola Zanichelli Editore 1964 Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points. Differential Equation Rational Function Analytic Coefficient Parametric Critical Point Fixed Critical Point Enthalten in Annali di matematica pura ed applicata Springer-Verlag, 1858 64(1964), 1 vom: Dez., Seite 229-364 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:64 year:1964 number:1 month:12 pages:229-364 https://doi.org/10.1007/BF02410054 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4323 GBV_ILN_4325 AR 64 1964 1 12 229-364 |
language |
English |
source |
Enthalten in Annali di matematica pura ed applicata 64(1964), 1 vom: Dez., Seite 229-364 volume:64 year:1964 number:1 month:12 pages:229-364 |
sourceStr |
Enthalten in Annali di matematica pura ed applicata 64(1964), 1 vom: Dez., Seite 229-364 volume:64 year:1964 number:1 month:12 pages:229-364 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Differential Equation Rational Function Analytic Coefficient Parametric Critical Point Fixed Critical Point |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annali di matematica pura ed applicata |
authorswithroles_txt_mv |
Bureau, F. J. @@aut@@ |
publishDateDaySort_date |
1964-12-01T00:00:00Z |
hierarchy_top_id |
129514764 |
dewey-sort |
3510 |
id |
OLC2058831551 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058831551</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180013.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1964 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02410054</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058831551</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02410054-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bureau, F. J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential equations with fixed critical points</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1964</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Nicola Zanichelli Editore 1964</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytic Coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parametric Critical Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed Critical Point</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annali di matematica pura ed applicata</subfield><subfield code="d">Springer-Verlag, 1858</subfield><subfield code="g">64(1964), 1 vom: Dez., Seite 229-364</subfield><subfield code="w">(DE-627)129514764</subfield><subfield code="w">(DE-600)210986-4</subfield><subfield code="w">(DE-576)014924102</subfield><subfield code="x">0373-3114</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:1964</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:229-364</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02410054</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">1964</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">229-364</subfield></datafield></record></collection>
|
author |
Bureau, F. J. |
spellingShingle |
Bureau, F. J. ddc 510 ssgn 17,1 misc Differential Equation misc Rational Function misc Analytic Coefficient misc Parametric Critical Point misc Fixed Critical Point Differential equations with fixed critical points |
authorStr |
Bureau, F. J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129514764 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0373-3114 |
topic_title |
510 VZ 17,1 ssgn Differential equations with fixed critical points Differential Equation Rational Function Analytic Coefficient Parametric Critical Point Fixed Critical Point |
topic |
ddc 510 ssgn 17,1 misc Differential Equation misc Rational Function misc Analytic Coefficient misc Parametric Critical Point misc Fixed Critical Point |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Differential Equation misc Rational Function misc Analytic Coefficient misc Parametric Critical Point misc Fixed Critical Point |
topic_browse |
ddc 510 ssgn 17,1 misc Differential Equation misc Rational Function misc Analytic Coefficient misc Parametric Critical Point misc Fixed Critical Point |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annali di matematica pura ed applicata |
hierarchy_parent_id |
129514764 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annali di matematica pura ed applicata |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 |
title |
Differential equations with fixed critical points |
ctrlnum |
(DE-627)OLC2058831551 (DE-He213)BF02410054-p |
title_full |
Differential equations with fixed critical points |
author_sort |
Bureau, F. J. |
journal |
Annali di matematica pura ed applicata |
journalStr |
Annali di matematica pura ed applicata |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1964 |
contenttype_str_mv |
txt |
container_start_page |
229 |
author_browse |
Bureau, F. J. |
container_volume |
64 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Bureau, F. J. |
doi_str_mv |
10.1007/BF02410054 |
dewey-full |
510 |
title_sort |
differential equations with fixed critical points |
title_auth |
Differential equations with fixed critical points |
abstract |
Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points. © Nicola Zanichelli Editore 1964 |
abstractGer |
Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points. © Nicola Zanichelli Editore 1964 |
abstract_unstemmed |
Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points. © Nicola Zanichelli Editore 1964 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4323 GBV_ILN_4325 |
container_issue |
1 |
title_short |
Differential equations with fixed critical points |
url |
https://doi.org/10.1007/BF02410054 |
remote_bool |
false |
ppnlink |
129514764 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02410054 |
up_date |
2024-07-03T20:25:30.828Z |
_version_ |
1803590912787349504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058831551</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180013.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1964 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02410054</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058831551</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02410054-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bureau, F. J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential equations with fixed critical points</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1964</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Nicola Zanichelli Editore 1964</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The object of this paper is to determine all the differential equations of the form$$\ddot y = R\left( {\dot y,y,x} \right)$$ where R is a rational function of .y and y, with analytic coefficients in x, whose general integral has no parametric critical points.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytic Coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parametric Critical Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed Critical Point</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annali di matematica pura ed applicata</subfield><subfield code="d">Springer-Verlag, 1858</subfield><subfield code="g">64(1964), 1 vom: Dez., Seite 229-364</subfield><subfield code="w">(DE-627)129514764</subfield><subfield code="w">(DE-600)210986-4</subfield><subfield code="w">(DE-576)014924102</subfield><subfield code="x">0373-3114</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:1964</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:229-364</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02410054</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">1964</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">229-364</subfield></datafield></record></collection>
|
score |
7.3998547 |