On the maximum rank of a real binary form
Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary fo...
Ausführliche Beschreibung
Autor*in: |
Causa, A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Annali di matematica pura ed applicata - Springer-Verlag, 1858, 190(2010), 1 vom: 21. März, Seite 55-59 |
---|---|
Übergeordnetes Werk: |
volume:190 ; year:2010 ; number:1 ; day:21 ; month:03 ; pages:55-59 |
Links: |
---|
DOI / URN: |
10.1007/s10231-010-0137-2 |
---|
Katalog-ID: |
OLC2058855132 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2058855132 | ||
003 | DE-627 | ||
005 | 20230502180057.0 | ||
007 | tu | ||
008 | 200820s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10231-010-0137-2 |2 doi | |
035 | |a (DE-627)OLC2058855132 | ||
035 | |a (DE-He213)s10231-010-0137-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Causa, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the maximum rank of a real binary form |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010 | ||
520 | |a Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has n distinct real roots. | ||
650 | 4 | |a Typical rank | |
650 | 4 | |a Waring rank | |
650 | 4 | |a Real roots | |
700 | 1 | |a Re, R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annali di matematica pura ed applicata |d Springer-Verlag, 1858 |g 190(2010), 1 vom: 21. März, Seite 55-59 |w (DE-627)129514764 |w (DE-600)210986-4 |w (DE-576)014924102 |x 0373-3114 |7 nnns |
773 | 1 | 8 | |g volume:190 |g year:2010 |g number:1 |g day:21 |g month:03 |g pages:55-59 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10231-010-0137-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 190 |j 2010 |e 1 |b 21 |c 03 |h 55-59 |
author_variant |
a c ac r r rr |
---|---|
matchkey_str |
article:03733114:2010----::nhmxmmakfrab |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s10231-010-0137-2 doi (DE-627)OLC2058855132 (DE-He213)s10231-010-0137-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Causa, A. verfasserin aut On the maximum rank of a real binary form 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010 Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has n distinct real roots. Typical rank Waring rank Real roots Re, R. aut Enthalten in Annali di matematica pura ed applicata Springer-Verlag, 1858 190(2010), 1 vom: 21. März, Seite 55-59 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:190 year:2010 number:1 day:21 month:03 pages:55-59 https://doi.org/10.1007/s10231-010-0137-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 AR 190 2010 1 21 03 55-59 |
spelling |
10.1007/s10231-010-0137-2 doi (DE-627)OLC2058855132 (DE-He213)s10231-010-0137-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Causa, A. verfasserin aut On the maximum rank of a real binary form 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010 Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has n distinct real roots. Typical rank Waring rank Real roots Re, R. aut Enthalten in Annali di matematica pura ed applicata Springer-Verlag, 1858 190(2010), 1 vom: 21. März, Seite 55-59 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:190 year:2010 number:1 day:21 month:03 pages:55-59 https://doi.org/10.1007/s10231-010-0137-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 AR 190 2010 1 21 03 55-59 |
allfields_unstemmed |
10.1007/s10231-010-0137-2 doi (DE-627)OLC2058855132 (DE-He213)s10231-010-0137-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Causa, A. verfasserin aut On the maximum rank of a real binary form 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010 Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has n distinct real roots. Typical rank Waring rank Real roots Re, R. aut Enthalten in Annali di matematica pura ed applicata Springer-Verlag, 1858 190(2010), 1 vom: 21. März, Seite 55-59 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:190 year:2010 number:1 day:21 month:03 pages:55-59 https://doi.org/10.1007/s10231-010-0137-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 AR 190 2010 1 21 03 55-59 |
allfieldsGer |
10.1007/s10231-010-0137-2 doi (DE-627)OLC2058855132 (DE-He213)s10231-010-0137-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Causa, A. verfasserin aut On the maximum rank of a real binary form 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010 Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has n distinct real roots. Typical rank Waring rank Real roots Re, R. aut Enthalten in Annali di matematica pura ed applicata Springer-Verlag, 1858 190(2010), 1 vom: 21. März, Seite 55-59 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:190 year:2010 number:1 day:21 month:03 pages:55-59 https://doi.org/10.1007/s10231-010-0137-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 AR 190 2010 1 21 03 55-59 |
allfieldsSound |
10.1007/s10231-010-0137-2 doi (DE-627)OLC2058855132 (DE-He213)s10231-010-0137-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Causa, A. verfasserin aut On the maximum rank of a real binary form 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010 Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has n distinct real roots. Typical rank Waring rank Real roots Re, R. aut Enthalten in Annali di matematica pura ed applicata Springer-Verlag, 1858 190(2010), 1 vom: 21. März, Seite 55-59 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:190 year:2010 number:1 day:21 month:03 pages:55-59 https://doi.org/10.1007/s10231-010-0137-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 AR 190 2010 1 21 03 55-59 |
language |
English |
source |
Enthalten in Annali di matematica pura ed applicata 190(2010), 1 vom: 21. März, Seite 55-59 volume:190 year:2010 number:1 day:21 month:03 pages:55-59 |
sourceStr |
Enthalten in Annali di matematica pura ed applicata 190(2010), 1 vom: 21. März, Seite 55-59 volume:190 year:2010 number:1 day:21 month:03 pages:55-59 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Typical rank Waring rank Real roots |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annali di matematica pura ed applicata |
authorswithroles_txt_mv |
Causa, A. @@aut@@ Re, R. @@aut@@ |
publishDateDaySort_date |
2010-03-21T00:00:00Z |
hierarchy_top_id |
129514764 |
dewey-sort |
3510 |
id |
OLC2058855132 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058855132</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180057.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10231-010-0137-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058855132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10231-010-0137-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Causa, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the maximum rank of a real binary form</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has n distinct real roots.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Typical rank</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waring rank</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real roots</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Re, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annali di matematica pura ed applicata</subfield><subfield code="d">Springer-Verlag, 1858</subfield><subfield code="g">190(2010), 1 vom: 21. März, Seite 55-59</subfield><subfield code="w">(DE-627)129514764</subfield><subfield code="w">(DE-600)210986-4</subfield><subfield code="w">(DE-576)014924102</subfield><subfield code="x">0373-3114</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:190</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:55-59</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10231-010-0137-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">190</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">03</subfield><subfield code="h">55-59</subfield></datafield></record></collection>
|
author |
Causa, A. |
spellingShingle |
Causa, A. ddc 510 ssgn 17,1 misc Typical rank misc Waring rank misc Real roots On the maximum rank of a real binary form |
authorStr |
Causa, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129514764 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0373-3114 |
topic_title |
510 VZ 17,1 ssgn On the maximum rank of a real binary form Typical rank Waring rank Real roots |
topic |
ddc 510 ssgn 17,1 misc Typical rank misc Waring rank misc Real roots |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Typical rank misc Waring rank misc Real roots |
topic_browse |
ddc 510 ssgn 17,1 misc Typical rank misc Waring rank misc Real roots |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annali di matematica pura ed applicata |
hierarchy_parent_id |
129514764 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annali di matematica pura ed applicata |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 |
title |
On the maximum rank of a real binary form |
ctrlnum |
(DE-627)OLC2058855132 (DE-He213)s10231-010-0137-2-p |
title_full |
On the maximum rank of a real binary form |
author_sort |
Causa, A. |
journal |
Annali di matematica pura ed applicata |
journalStr |
Annali di matematica pura ed applicata |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
55 |
author_browse |
Causa, A. Re, R. |
container_volume |
190 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Causa, A. |
doi_str_mv |
10.1007/s10231-010-0137-2 |
dewey-full |
510 |
title_sort |
on the maximum rank of a real binary form |
title_auth |
On the maximum rank of a real binary form |
abstract |
Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has n distinct real roots. © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010 |
abstractGer |
Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has n distinct real roots. © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010 |
abstract_unstemmed |
Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has n distinct real roots. © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
1 |
title_short |
On the maximum rank of a real binary form |
url |
https://doi.org/10.1007/s10231-010-0137-2 |
remote_bool |
false |
author2 |
Re, R. |
author2Str |
Re, R. |
ppnlink |
129514764 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10231-010-0137-2 |
up_date |
2024-07-03T20:29:57.439Z |
_version_ |
1803591192348196864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058855132</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180057.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10231-010-0137-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058855132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10231-010-0137-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Causa, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the maximum rank of a real binary form</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We show that a real binary form f of degree n has n distinct real roots if and only if for any $${(\alpha,\beta)\in\mathbb{R}^2{\setminus}\{0\}}$$ all the forms αfx + βfy have n − 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has n distinct real roots.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Typical rank</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waring rank</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real roots</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Re, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annali di matematica pura ed applicata</subfield><subfield code="d">Springer-Verlag, 1858</subfield><subfield code="g">190(2010), 1 vom: 21. März, Seite 55-59</subfield><subfield code="w">(DE-627)129514764</subfield><subfield code="w">(DE-600)210986-4</subfield><subfield code="w">(DE-576)014924102</subfield><subfield code="x">0373-3114</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:190</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:55-59</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10231-010-0137-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">190</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">03</subfield><subfield code="h">55-59</subfield></datafield></record></collection>
|
score |
7.4020844 |