Use of phase data for accurate differential GPS kinematic positioning
Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode...
Ausführliche Beschreibung
Autor*in: |
Lachapelle, G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1987 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Bureau Central de L’Association Internationale de Géodésie 1987 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of geodesy - Springer-Verlag, 1995, 61(1987), 4 vom: Dez., Seite 367-377 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:1987 ; number:4 ; month:12 ; pages:367-377 |
Links: |
---|
DOI / URN: |
10.1007/BF02520561 |
---|
Katalog-ID: |
OLC2058928113 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2058928113 | ||
003 | DE-627 | ||
005 | 20230323144023.0 | ||
007 | tu | ||
008 | 200820s1987 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02520561 |2 doi | |
035 | |a (DE-627)OLC2058928113 | ||
035 | |a (DE-He213)BF02520561-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 14 |2 ssgn | ||
100 | 1 | |a Lachapelle, G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Use of phase data for accurate differential GPS kinematic positioning |
264 | 1 | |c 1987 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Bureau Central de L’Association Internationale de Géodésie 1987 | ||
520 | |a Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode was utilized. The relatively long baseline used for the tests provided valuable information on the effects of broadcast ephemeris errors on the differential results. The tests were conducted with two Texas InstrumentsTI4100 receivers using both theP andC/A codes to assess the effect of both code measurement noise, and ionospheric irregularities on differential positioning over such a baseline. The use of cesium clocks to constrain time was also tested. Accuracies (in terms of repeatabilities) of the order of1 to3 ppm, i.e.,1 to3 m, were obtained. | ||
650 | 4 | |a Phase Measurement | |
650 | 4 | |a Monitor Station | |
650 | 4 | |a Remote Station | |
650 | 4 | |a Cycle Slip | |
650 | 4 | |a Kinematic Position | |
700 | 1 | |a Falkenberg, W. |4 aut | |
700 | 1 | |a Casey, M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of geodesy |d Springer-Verlag, 1995 |g 61(1987), 4 vom: Dez., Seite 367-377 |w (DE-627)191686298 |w (DE-600)1302972-1 |w (DE-576)051377373 |x 0949-7714 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:1987 |g number:4 |g month:12 |g pages:367-377 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02520561 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
951 | |a AR | ||
952 | |d 61 |j 1987 |e 4 |c 12 |h 367-377 |
author_variant |
g l gl w f wf m c mc |
---|---|
matchkey_str |
article:09497714:1987----::sopaeaaoacrtdfeetagsie |
hierarchy_sort_str |
1987 |
publishDate |
1987 |
allfields |
10.1007/BF02520561 doi (DE-627)OLC2058928113 (DE-He213)BF02520561-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Lachapelle, G. verfasserin aut Use of phase data for accurate differential GPS kinematic positioning 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Bureau Central de L’Association Internationale de Géodésie 1987 Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode was utilized. The relatively long baseline used for the tests provided valuable information on the effects of broadcast ephemeris errors on the differential results. The tests were conducted with two Texas InstrumentsTI4100 receivers using both theP andC/A codes to assess the effect of both code measurement noise, and ionospheric irregularities on differential positioning over such a baseline. The use of cesium clocks to constrain time was also tested. Accuracies (in terms of repeatabilities) of the order of1 to3 ppm, i.e.,1 to3 m, were obtained. Phase Measurement Monitor Station Remote Station Cycle Slip Kinematic Position Falkenberg, W. aut Casey, M. aut Enthalten in Journal of geodesy Springer-Verlag, 1995 61(1987), 4 vom: Dez., Seite 367-377 (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:61 year:1987 number:4 month:12 pages:367-377 https://doi.org/10.1007/BF02520561 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO AR 61 1987 4 12 367-377 |
spelling |
10.1007/BF02520561 doi (DE-627)OLC2058928113 (DE-He213)BF02520561-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Lachapelle, G. verfasserin aut Use of phase data for accurate differential GPS kinematic positioning 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Bureau Central de L’Association Internationale de Géodésie 1987 Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode was utilized. The relatively long baseline used for the tests provided valuable information on the effects of broadcast ephemeris errors on the differential results. The tests were conducted with two Texas InstrumentsTI4100 receivers using both theP andC/A codes to assess the effect of both code measurement noise, and ionospheric irregularities on differential positioning over such a baseline. The use of cesium clocks to constrain time was also tested. Accuracies (in terms of repeatabilities) of the order of1 to3 ppm, i.e.,1 to3 m, were obtained. Phase Measurement Monitor Station Remote Station Cycle Slip Kinematic Position Falkenberg, W. aut Casey, M. aut Enthalten in Journal of geodesy Springer-Verlag, 1995 61(1987), 4 vom: Dez., Seite 367-377 (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:61 year:1987 number:4 month:12 pages:367-377 https://doi.org/10.1007/BF02520561 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO AR 61 1987 4 12 367-377 |
allfields_unstemmed |
10.1007/BF02520561 doi (DE-627)OLC2058928113 (DE-He213)BF02520561-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Lachapelle, G. verfasserin aut Use of phase data for accurate differential GPS kinematic positioning 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Bureau Central de L’Association Internationale de Géodésie 1987 Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode was utilized. The relatively long baseline used for the tests provided valuable information on the effects of broadcast ephemeris errors on the differential results. The tests were conducted with two Texas InstrumentsTI4100 receivers using both theP andC/A codes to assess the effect of both code measurement noise, and ionospheric irregularities on differential positioning over such a baseline. The use of cesium clocks to constrain time was also tested. Accuracies (in terms of repeatabilities) of the order of1 to3 ppm, i.e.,1 to3 m, were obtained. Phase Measurement Monitor Station Remote Station Cycle Slip Kinematic Position Falkenberg, W. aut Casey, M. aut Enthalten in Journal of geodesy Springer-Verlag, 1995 61(1987), 4 vom: Dez., Seite 367-377 (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:61 year:1987 number:4 month:12 pages:367-377 https://doi.org/10.1007/BF02520561 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO AR 61 1987 4 12 367-377 |
allfieldsGer |
10.1007/BF02520561 doi (DE-627)OLC2058928113 (DE-He213)BF02520561-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Lachapelle, G. verfasserin aut Use of phase data for accurate differential GPS kinematic positioning 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Bureau Central de L’Association Internationale de Géodésie 1987 Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode was utilized. The relatively long baseline used for the tests provided valuable information on the effects of broadcast ephemeris errors on the differential results. The tests were conducted with two Texas InstrumentsTI4100 receivers using both theP andC/A codes to assess the effect of both code measurement noise, and ionospheric irregularities on differential positioning over such a baseline. The use of cesium clocks to constrain time was also tested. Accuracies (in terms of repeatabilities) of the order of1 to3 ppm, i.e.,1 to3 m, were obtained. Phase Measurement Monitor Station Remote Station Cycle Slip Kinematic Position Falkenberg, W. aut Casey, M. aut Enthalten in Journal of geodesy Springer-Verlag, 1995 61(1987), 4 vom: Dez., Seite 367-377 (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:61 year:1987 number:4 month:12 pages:367-377 https://doi.org/10.1007/BF02520561 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO AR 61 1987 4 12 367-377 |
allfieldsSound |
10.1007/BF02520561 doi (DE-627)OLC2058928113 (DE-He213)BF02520561-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Lachapelle, G. verfasserin aut Use of phase data for accurate differential GPS kinematic positioning 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Bureau Central de L’Association Internationale de Géodésie 1987 Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode was utilized. The relatively long baseline used for the tests provided valuable information on the effects of broadcast ephemeris errors on the differential results. The tests were conducted with two Texas InstrumentsTI4100 receivers using both theP andC/A codes to assess the effect of both code measurement noise, and ionospheric irregularities on differential positioning over such a baseline. The use of cesium clocks to constrain time was also tested. Accuracies (in terms of repeatabilities) of the order of1 to3 ppm, i.e.,1 to3 m, were obtained. Phase Measurement Monitor Station Remote Station Cycle Slip Kinematic Position Falkenberg, W. aut Casey, M. aut Enthalten in Journal of geodesy Springer-Verlag, 1995 61(1987), 4 vom: Dez., Seite 367-377 (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:61 year:1987 number:4 month:12 pages:367-377 https://doi.org/10.1007/BF02520561 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO AR 61 1987 4 12 367-377 |
language |
English |
source |
Enthalten in Journal of geodesy 61(1987), 4 vom: Dez., Seite 367-377 volume:61 year:1987 number:4 month:12 pages:367-377 |
sourceStr |
Enthalten in Journal of geodesy 61(1987), 4 vom: Dez., Seite 367-377 volume:61 year:1987 number:4 month:12 pages:367-377 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Phase Measurement Monitor Station Remote Station Cycle Slip Kinematic Position |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of geodesy |
authorswithroles_txt_mv |
Lachapelle, G. @@aut@@ Falkenberg, W. @@aut@@ Casey, M. @@aut@@ |
publishDateDaySort_date |
1987-12-01T00:00:00Z |
hierarchy_top_id |
191686298 |
dewey-sort |
3550 |
id |
OLC2058928113 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058928113</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323144023.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1987 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02520561</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058928113</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02520561-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lachapelle, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Use of phase data for accurate differential GPS kinematic positioning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1987</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Bureau Central de L’Association Internationale de Géodésie 1987</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode was utilized. The relatively long baseline used for the tests provided valuable information on the effects of broadcast ephemeris errors on the differential results. The tests were conducted with two Texas InstrumentsTI4100 receivers using both theP andC/A codes to assess the effect of both code measurement noise, and ionospheric irregularities on differential positioning over such a baseline. The use of cesium clocks to constrain time was also tested. Accuracies (in terms of repeatabilities) of the order of1 to3 ppm, i.e.,1 to3 m, were obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monitor Station</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote Station</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cycle Slip</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinematic Position</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Falkenberg, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Casey, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geodesy</subfield><subfield code="d">Springer-Verlag, 1995</subfield><subfield code="g">61(1987), 4 vom: Dez., Seite 367-377</subfield><subfield code="w">(DE-627)191686298</subfield><subfield code="w">(DE-600)1302972-1</subfield><subfield code="w">(DE-576)051377373</subfield><subfield code="x">0949-7714</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:1987</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:367-377</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02520561</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">1987</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">367-377</subfield></datafield></record></collection>
|
author |
Lachapelle, G. |
spellingShingle |
Lachapelle, G. ddc 550 ssgn 14 misc Phase Measurement misc Monitor Station misc Remote Station misc Cycle Slip misc Kinematic Position Use of phase data for accurate differential GPS kinematic positioning |
authorStr |
Lachapelle, G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)191686298 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0949-7714 |
topic_title |
550 VZ 14 ssgn Use of phase data for accurate differential GPS kinematic positioning Phase Measurement Monitor Station Remote Station Cycle Slip Kinematic Position |
topic |
ddc 550 ssgn 14 misc Phase Measurement misc Monitor Station misc Remote Station misc Cycle Slip misc Kinematic Position |
topic_unstemmed |
ddc 550 ssgn 14 misc Phase Measurement misc Monitor Station misc Remote Station misc Cycle Slip misc Kinematic Position |
topic_browse |
ddc 550 ssgn 14 misc Phase Measurement misc Monitor Station misc Remote Station misc Cycle Slip misc Kinematic Position |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of geodesy |
hierarchy_parent_id |
191686298 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of geodesy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 |
title |
Use of phase data for accurate differential GPS kinematic positioning |
ctrlnum |
(DE-627)OLC2058928113 (DE-He213)BF02520561-p |
title_full |
Use of phase data for accurate differential GPS kinematic positioning |
author_sort |
Lachapelle, G. |
journal |
Journal of geodesy |
journalStr |
Journal of geodesy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1987 |
contenttype_str_mv |
txt |
container_start_page |
367 |
author_browse |
Lachapelle, G. Falkenberg, W. Casey, M. |
container_volume |
61 |
class |
550 VZ 14 ssgn |
format_se |
Aufsätze |
author-letter |
Lachapelle, G. |
doi_str_mv |
10.1007/BF02520561 |
dewey-full |
550 |
title_sort |
use of phase data for accurate differential gps kinematic positioning |
title_auth |
Use of phase data for accurate differential GPS kinematic positioning |
abstract |
Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode was utilized. The relatively long baseline used for the tests provided valuable information on the effects of broadcast ephemeris errors on the differential results. The tests were conducted with two Texas InstrumentsTI4100 receivers using both theP andC/A codes to assess the effect of both code measurement noise, and ionospheric irregularities on differential positioning over such a baseline. The use of cesium clocks to constrain time was also tested. Accuracies (in terms of repeatabilities) of the order of1 to3 ppm, i.e.,1 to3 m, were obtained. © Bureau Central de L’Association Internationale de Géodésie 1987 |
abstractGer |
Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode was utilized. The relatively long baseline used for the tests provided valuable information on the effects of broadcast ephemeris errors on the differential results. The tests were conducted with two Texas InstrumentsTI4100 receivers using both theP andC/A codes to assess the effect of both code measurement noise, and ionospheric irregularities on differential positioning over such a baseline. The use of cesium clocks to constrain time was also tested. Accuracies (in terms of repeatabilities) of the order of1 to3 ppm, i.e.,1 to3 m, were obtained. © Bureau Central de L’Association Internationale de Géodésie 1987 |
abstract_unstemmed |
Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode was utilized. The relatively long baseline used for the tests provided valuable information on the effects of broadcast ephemeris errors on the differential results. The tests were conducted with two Texas InstrumentsTI4100 receivers using both theP andC/A codes to assess the effect of both code measurement noise, and ionospheric irregularities on differential positioning over such a baseline. The use of cesium clocks to constrain time was also tested. Accuracies (in terms of repeatabilities) of the order of1 to3 ppm, i.e.,1 to3 m, were obtained. © Bureau Central de L’Association Internationale de Géodésie 1987 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO |
container_issue |
4 |
title_short |
Use of phase data for accurate differential GPS kinematic positioning |
url |
https://doi.org/10.1007/BF02520561 |
remote_bool |
false |
author2 |
Falkenberg, W. Casey, M. |
author2Str |
Falkenberg, W. Casey, M. |
ppnlink |
191686298 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02520561 |
up_date |
2024-07-03T20:48:26.243Z |
_version_ |
1803592355028140032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058928113</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323144023.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1987 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02520561</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058928113</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02520561-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lachapelle, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Use of phase data for accurate differential GPS kinematic positioning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1987</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Bureau Central de L’Association Internationale de Géodésie 1987</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract DifferentialGPS land kinematic positioning tests conducted at velocities of20 to100 km/h over a baseline of1,000 km using a combination of pseudo-range and phase measurements are described. An algorithm designed for high reliability and accuracy of1 to2 m in real time field operational mode was utilized. The relatively long baseline used for the tests provided valuable information on the effects of broadcast ephemeris errors on the differential results. The tests were conducted with two Texas InstrumentsTI4100 receivers using both theP andC/A codes to assess the effect of both code measurement noise, and ionospheric irregularities on differential positioning over such a baseline. The use of cesium clocks to constrain time was also tested. Accuracies (in terms of repeatabilities) of the order of1 to3 ppm, i.e.,1 to3 m, were obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monitor Station</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote Station</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cycle Slip</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinematic Position</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Falkenberg, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Casey, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geodesy</subfield><subfield code="d">Springer-Verlag, 1995</subfield><subfield code="g">61(1987), 4 vom: Dez., Seite 367-377</subfield><subfield code="w">(DE-627)191686298</subfield><subfield code="w">(DE-600)1302972-1</subfield><subfield code="w">(DE-576)051377373</subfield><subfield code="x">0949-7714</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:1987</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:367-377</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02520561</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">1987</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">367-377</subfield></datafield></record></collection>
|
score |
7.399935 |