Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz
Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle co...
Ausführliche Beschreibung
Autor*in: |
Nguyen, Viet Khoi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Global Navigation Satellite System (GNSS) |
---|
Anmerkung: |
© The Author(s) 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of geodesy - Springer Berlin Heidelberg, 1995, 93(2019), 10 vom: 01. Okt., Seite 1985-2001 |
---|---|
Übergeordnetes Werk: |
volume:93 ; year:2019 ; number:10 ; day:01 ; month:10 ; pages:1985-2001 |
Links: |
---|
DOI / URN: |
10.1007/s00190-019-01297-z |
---|
Katalog-ID: |
OLC2058951026 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2058951026 | ||
003 | DE-627 | ||
005 | 20230323144406.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00190-019-01297-z |2 doi | |
035 | |a (DE-627)OLC2058951026 | ||
035 | |a (DE-He213)s00190-019-01297-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 14 |2 ssgn | ||
100 | 1 | |a Nguyen, Viet Khoi |e verfasserin |0 (orcid)0000-0003-1055-7198 |4 aut | |
245 | 1 | 0 | |a Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2019 | ||
520 | |a Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time. | ||
650 | 4 | |a Phase scintillation index | |
650 | 4 | |a Ionospheric scintillation | |
650 | 4 | |a Global Navigation Satellite System (GNSS) | |
650 | 4 | |a Ionospheric scintillation monitoring receiver (ISMR) | |
650 | 4 | |a Geodetic receiver | |
650 | 4 | |a Cycle-slip detection | |
700 | 1 | |a Rovira-Garcia, Adria |4 aut | |
700 | 1 | |a Juan, José Miguel |4 aut | |
700 | 1 | |a Sanz, Jaume |4 aut | |
700 | 1 | |a González-Casado, Guillermo |4 aut | |
700 | 1 | |a La, The Vinh |4 aut | |
700 | 1 | |a Ta, Tung Hai |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of geodesy |d Springer Berlin Heidelberg, 1995 |g 93(2019), 10 vom: 01. Okt., Seite 1985-2001 |w (DE-627)191686298 |w (DE-600)1302972-1 |w (DE-576)051377373 |x 0949-7714 |7 nnns |
773 | 1 | 8 | |g volume:93 |g year:2019 |g number:10 |g day:01 |g month:10 |g pages:1985-2001 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00190-019-01297-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 93 |j 2019 |e 10 |b 01 |c 10 |h 1985-2001 |
author_variant |
v k n vk vkn a r g arg j m j jm jmj j s js g g c ggc t v l tv tvl t h t th tht |
---|---|
matchkey_str |
article:09497714:2019----::esrnpaecniltoadfeetrqecewtcnetoags |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00190-019-01297-z doi (DE-627)OLC2058951026 (DE-He213)s00190-019-01297-z-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Nguyen, Viet Khoi verfasserin (orcid)0000-0003-1055-7198 aut Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time. Phase scintillation index Ionospheric scintillation Global Navigation Satellite System (GNSS) Ionospheric scintillation monitoring receiver (ISMR) Geodetic receiver Cycle-slip detection Rovira-Garcia, Adria aut Juan, José Miguel aut Sanz, Jaume aut González-Casado, Guillermo aut La, The Vinh aut Ta, Tung Hai aut Enthalten in Journal of geodesy Springer Berlin Heidelberg, 1995 93(2019), 10 vom: 01. Okt., Seite 1985-2001 (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:93 year:2019 number:10 day:01 month:10 pages:1985-2001 https://doi.org/10.1007/s00190-019-01297-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 93 2019 10 01 10 1985-2001 |
spelling |
10.1007/s00190-019-01297-z doi (DE-627)OLC2058951026 (DE-He213)s00190-019-01297-z-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Nguyen, Viet Khoi verfasserin (orcid)0000-0003-1055-7198 aut Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time. Phase scintillation index Ionospheric scintillation Global Navigation Satellite System (GNSS) Ionospheric scintillation monitoring receiver (ISMR) Geodetic receiver Cycle-slip detection Rovira-Garcia, Adria aut Juan, José Miguel aut Sanz, Jaume aut González-Casado, Guillermo aut La, The Vinh aut Ta, Tung Hai aut Enthalten in Journal of geodesy Springer Berlin Heidelberg, 1995 93(2019), 10 vom: 01. Okt., Seite 1985-2001 (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:93 year:2019 number:10 day:01 month:10 pages:1985-2001 https://doi.org/10.1007/s00190-019-01297-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 93 2019 10 01 10 1985-2001 |
allfields_unstemmed |
10.1007/s00190-019-01297-z doi (DE-627)OLC2058951026 (DE-He213)s00190-019-01297-z-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Nguyen, Viet Khoi verfasserin (orcid)0000-0003-1055-7198 aut Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time. Phase scintillation index Ionospheric scintillation Global Navigation Satellite System (GNSS) Ionospheric scintillation monitoring receiver (ISMR) Geodetic receiver Cycle-slip detection Rovira-Garcia, Adria aut Juan, José Miguel aut Sanz, Jaume aut González-Casado, Guillermo aut La, The Vinh aut Ta, Tung Hai aut Enthalten in Journal of geodesy Springer Berlin Heidelberg, 1995 93(2019), 10 vom: 01. Okt., Seite 1985-2001 (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:93 year:2019 number:10 day:01 month:10 pages:1985-2001 https://doi.org/10.1007/s00190-019-01297-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 93 2019 10 01 10 1985-2001 |
allfieldsGer |
10.1007/s00190-019-01297-z doi (DE-627)OLC2058951026 (DE-He213)s00190-019-01297-z-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Nguyen, Viet Khoi verfasserin (orcid)0000-0003-1055-7198 aut Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time. Phase scintillation index Ionospheric scintillation Global Navigation Satellite System (GNSS) Ionospheric scintillation monitoring receiver (ISMR) Geodetic receiver Cycle-slip detection Rovira-Garcia, Adria aut Juan, José Miguel aut Sanz, Jaume aut González-Casado, Guillermo aut La, The Vinh aut Ta, Tung Hai aut Enthalten in Journal of geodesy Springer Berlin Heidelberg, 1995 93(2019), 10 vom: 01. Okt., Seite 1985-2001 (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:93 year:2019 number:10 day:01 month:10 pages:1985-2001 https://doi.org/10.1007/s00190-019-01297-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 93 2019 10 01 10 1985-2001 |
allfieldsSound |
10.1007/s00190-019-01297-z doi (DE-627)OLC2058951026 (DE-He213)s00190-019-01297-z-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Nguyen, Viet Khoi verfasserin (orcid)0000-0003-1055-7198 aut Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time. Phase scintillation index Ionospheric scintillation Global Navigation Satellite System (GNSS) Ionospheric scintillation monitoring receiver (ISMR) Geodetic receiver Cycle-slip detection Rovira-Garcia, Adria aut Juan, José Miguel aut Sanz, Jaume aut González-Casado, Guillermo aut La, The Vinh aut Ta, Tung Hai aut Enthalten in Journal of geodesy Springer Berlin Heidelberg, 1995 93(2019), 10 vom: 01. Okt., Seite 1985-2001 (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:93 year:2019 number:10 day:01 month:10 pages:1985-2001 https://doi.org/10.1007/s00190-019-01297-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 93 2019 10 01 10 1985-2001 |
language |
English |
source |
Enthalten in Journal of geodesy 93(2019), 10 vom: 01. Okt., Seite 1985-2001 volume:93 year:2019 number:10 day:01 month:10 pages:1985-2001 |
sourceStr |
Enthalten in Journal of geodesy 93(2019), 10 vom: 01. Okt., Seite 1985-2001 volume:93 year:2019 number:10 day:01 month:10 pages:1985-2001 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Phase scintillation index Ionospheric scintillation Global Navigation Satellite System (GNSS) Ionospheric scintillation monitoring receiver (ISMR) Geodetic receiver Cycle-slip detection |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of geodesy |
authorswithroles_txt_mv |
Nguyen, Viet Khoi @@aut@@ Rovira-Garcia, Adria @@aut@@ Juan, José Miguel @@aut@@ Sanz, Jaume @@aut@@ González-Casado, Guillermo @@aut@@ La, The Vinh @@aut@@ Ta, Tung Hai @@aut@@ |
publishDateDaySort_date |
2019-10-01T00:00:00Z |
hierarchy_top_id |
191686298 |
dewey-sort |
3550 |
id |
OLC2058951026 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058951026</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323144406.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00190-019-01297-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058951026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00190-019-01297-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nguyen, Viet Khoi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1055-7198</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase scintillation index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric scintillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Navigation Satellite System (GNSS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric scintillation monitoring receiver (ISMR)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geodetic receiver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cycle-slip detection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rovira-Garcia, Adria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Juan, José Miguel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanz, Jaume</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">González-Casado, Guillermo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">La, The Vinh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ta, Tung Hai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geodesy</subfield><subfield code="d">Springer Berlin Heidelberg, 1995</subfield><subfield code="g">93(2019), 10 vom: 01. Okt., Seite 1985-2001</subfield><subfield code="w">(DE-627)191686298</subfield><subfield code="w">(DE-600)1302972-1</subfield><subfield code="w">(DE-576)051377373</subfield><subfield code="x">0949-7714</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:93</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:10</subfield><subfield code="g">day:01</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1985-2001</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00190-019-01297-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">93</subfield><subfield code="j">2019</subfield><subfield code="e">10</subfield><subfield code="b">01</subfield><subfield code="c">10</subfield><subfield code="h">1985-2001</subfield></datafield></record></collection>
|
author |
Nguyen, Viet Khoi |
spellingShingle |
Nguyen, Viet Khoi ddc 550 ssgn 14 misc Phase scintillation index misc Ionospheric scintillation misc Global Navigation Satellite System (GNSS) misc Ionospheric scintillation monitoring receiver (ISMR) misc Geodetic receiver misc Cycle-slip detection Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz |
authorStr |
Nguyen, Viet Khoi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)191686298 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0949-7714 |
topic_title |
550 VZ 14 ssgn Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz Phase scintillation index Ionospheric scintillation Global Navigation Satellite System (GNSS) Ionospheric scintillation monitoring receiver (ISMR) Geodetic receiver Cycle-slip detection |
topic |
ddc 550 ssgn 14 misc Phase scintillation index misc Ionospheric scintillation misc Global Navigation Satellite System (GNSS) misc Ionospheric scintillation monitoring receiver (ISMR) misc Geodetic receiver misc Cycle-slip detection |
topic_unstemmed |
ddc 550 ssgn 14 misc Phase scintillation index misc Ionospheric scintillation misc Global Navigation Satellite System (GNSS) misc Ionospheric scintillation monitoring receiver (ISMR) misc Geodetic receiver misc Cycle-slip detection |
topic_browse |
ddc 550 ssgn 14 misc Phase scintillation index misc Ionospheric scintillation misc Global Navigation Satellite System (GNSS) misc Ionospheric scintillation monitoring receiver (ISMR) misc Geodetic receiver misc Cycle-slip detection |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of geodesy |
hierarchy_parent_id |
191686298 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of geodesy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 |
title |
Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz |
ctrlnum |
(DE-627)OLC2058951026 (DE-He213)s00190-019-01297-z-p |
title_full |
Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz |
author_sort |
Nguyen, Viet Khoi |
journal |
Journal of geodesy |
journalStr |
Journal of geodesy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1985 |
author_browse |
Nguyen, Viet Khoi Rovira-Garcia, Adria Juan, José Miguel Sanz, Jaume González-Casado, Guillermo La, The Vinh Ta, Tung Hai |
container_volume |
93 |
class |
550 VZ 14 ssgn |
format_se |
Aufsätze |
author-letter |
Nguyen, Viet Khoi |
doi_str_mv |
10.1007/s00190-019-01297-z |
normlink |
(ORCID)0000-0003-1055-7198 |
normlink_prefix_str_mv |
(orcid)0000-0003-1055-7198 |
dewey-full |
550 |
title_sort |
measuring phase scintillation at different frequencies with conventional gnss receivers operating at 1 hz |
title_auth |
Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz |
abstract |
Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time. © The Author(s) 2019 |
abstractGer |
Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time. © The Author(s) 2019 |
abstract_unstemmed |
Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time. © The Author(s) 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
10 |
title_short |
Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz |
url |
https://doi.org/10.1007/s00190-019-01297-z |
remote_bool |
false |
author2 |
Rovira-Garcia, Adria Juan, José Miguel Sanz, Jaume González-Casado, Guillermo La, The Vinh Ta, Tung Hai |
author2Str |
Rovira-Garcia, Adria Juan, José Miguel Sanz, Jaume González-Casado, Guillermo La, The Vinh Ta, Tung Hai |
ppnlink |
191686298 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00190-019-01297-z |
up_date |
2024-07-03T20:53:55.831Z |
_version_ |
1803592700612575233 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058951026</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323144406.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00190-019-01297-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058951026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00190-019-01297-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nguyen, Viet Khoi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1055-7198</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase scintillation index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric scintillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Navigation Satellite System (GNSS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric scintillation monitoring receiver (ISMR)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geodetic receiver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cycle-slip detection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rovira-Garcia, Adria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Juan, José Miguel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanz, Jaume</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">González-Casado, Guillermo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">La, The Vinh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ta, Tung Hai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geodesy</subfield><subfield code="d">Springer Berlin Heidelberg, 1995</subfield><subfield code="g">93(2019), 10 vom: 01. Okt., Seite 1985-2001</subfield><subfield code="w">(DE-627)191686298</subfield><subfield code="w">(DE-600)1302972-1</subfield><subfield code="w">(DE-576)051377373</subfield><subfield code="x">0949-7714</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:93</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:10</subfield><subfield code="g">day:01</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1985-2001</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00190-019-01297-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">93</subfield><subfield code="j">2019</subfield><subfield code="e">10</subfield><subfield code="b">01</subfield><subfield code="c">10</subfield><subfield code="h">1985-2001</subfield></datafield></record></collection>
|
score |
7.4007235 |