Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions
Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain po...
Ausführliche Beschreibung
Autor*in: |
Epstein, Charles L. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Mathematica Josephina, Inc. 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: The journal of geometric analysis - Springer US, 1991, 30(2017), 3 vom: 07. Juni, Seite 2377-2421 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2017 ; number:3 ; day:07 ; month:06 ; pages:2377-2421 |
Links: |
---|
DOI / URN: |
10.1007/s12220-017-9874-4 |
---|
Katalog-ID: |
OLC2058979028 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2058979028 | ||
003 | DE-627 | ||
005 | 20230504150825.0 | ||
007 | tu | ||
008 | 200819s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s12220-017-9874-4 |2 doi | |
035 | |a (DE-627)OLC2058979028 | ||
035 | |a (DE-He213)s12220-017-9874-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Epstein, Charles L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Mathematica Josephina, Inc. 2017 | ||
520 | |a Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of gene frequencies. Among the applications of our results is the description of the structure of the transition probabilities and of the hitting distributions of the underlying gene frequencies process. | ||
650 | 4 | |a Degenerate elliptic operators | |
650 | 4 | |a A priori supremum estimates | |
650 | 4 | |a A priori Sobolev estimates | |
650 | 4 | |a Boundary regularity | |
700 | 1 | |a Pop, Camelia A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The journal of geometric analysis |d Springer US, 1991 |g 30(2017), 3 vom: 07. Juni, Seite 2377-2421 |w (DE-627)131006398 |w (DE-600)1086949-9 |w (DE-576)028039211 |x 1050-6926 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2017 |g number:3 |g day:07 |g month:06 |g pages:2377-2421 |
856 | 4 | 1 | |u https://doi.org/10.1007/s12220-017-9874-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
951 | |a AR | ||
952 | |d 30 |j 2017 |e 3 |b 07 |c 06 |h 2377-2421 |
author_variant |
c l e cl cle c a p ca cap |
---|---|
matchkey_str |
article:10506926:2017----::onaysiaefrdgnrtprblcqainihatadr |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s12220-017-9874-4 doi (DE-627)OLC2058979028 (DE-He213)s12220-017-9874-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Epstein, Charles L. verfasserin aut Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Mathematica Josephina, Inc. 2017 Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of gene frequencies. Among the applications of our results is the description of the structure of the transition probabilities and of the hitting distributions of the underlying gene frequencies process. Degenerate elliptic operators A priori supremum estimates A priori Sobolev estimates Boundary regularity Pop, Camelia A. aut Enthalten in The journal of geometric analysis Springer US, 1991 30(2017), 3 vom: 07. Juni, Seite 2377-2421 (DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 1050-6926 nnns volume:30 year:2017 number:3 day:07 month:06 pages:2377-2421 https://doi.org/10.1007/s12220-017-9874-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_2088 GBV_ILN_2409 AR 30 2017 3 07 06 2377-2421 |
spelling |
10.1007/s12220-017-9874-4 doi (DE-627)OLC2058979028 (DE-He213)s12220-017-9874-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Epstein, Charles L. verfasserin aut Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Mathematica Josephina, Inc. 2017 Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of gene frequencies. Among the applications of our results is the description of the structure of the transition probabilities and of the hitting distributions of the underlying gene frequencies process. Degenerate elliptic operators A priori supremum estimates A priori Sobolev estimates Boundary regularity Pop, Camelia A. aut Enthalten in The journal of geometric analysis Springer US, 1991 30(2017), 3 vom: 07. Juni, Seite 2377-2421 (DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 1050-6926 nnns volume:30 year:2017 number:3 day:07 month:06 pages:2377-2421 https://doi.org/10.1007/s12220-017-9874-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_2088 GBV_ILN_2409 AR 30 2017 3 07 06 2377-2421 |
allfields_unstemmed |
10.1007/s12220-017-9874-4 doi (DE-627)OLC2058979028 (DE-He213)s12220-017-9874-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Epstein, Charles L. verfasserin aut Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Mathematica Josephina, Inc. 2017 Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of gene frequencies. Among the applications of our results is the description of the structure of the transition probabilities and of the hitting distributions of the underlying gene frequencies process. Degenerate elliptic operators A priori supremum estimates A priori Sobolev estimates Boundary regularity Pop, Camelia A. aut Enthalten in The journal of geometric analysis Springer US, 1991 30(2017), 3 vom: 07. Juni, Seite 2377-2421 (DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 1050-6926 nnns volume:30 year:2017 number:3 day:07 month:06 pages:2377-2421 https://doi.org/10.1007/s12220-017-9874-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_2088 GBV_ILN_2409 AR 30 2017 3 07 06 2377-2421 |
allfieldsGer |
10.1007/s12220-017-9874-4 doi (DE-627)OLC2058979028 (DE-He213)s12220-017-9874-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Epstein, Charles L. verfasserin aut Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Mathematica Josephina, Inc. 2017 Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of gene frequencies. Among the applications of our results is the description of the structure of the transition probabilities and of the hitting distributions of the underlying gene frequencies process. Degenerate elliptic operators A priori supremum estimates A priori Sobolev estimates Boundary regularity Pop, Camelia A. aut Enthalten in The journal of geometric analysis Springer US, 1991 30(2017), 3 vom: 07. Juni, Seite 2377-2421 (DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 1050-6926 nnns volume:30 year:2017 number:3 day:07 month:06 pages:2377-2421 https://doi.org/10.1007/s12220-017-9874-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_2088 GBV_ILN_2409 AR 30 2017 3 07 06 2377-2421 |
allfieldsSound |
10.1007/s12220-017-9874-4 doi (DE-627)OLC2058979028 (DE-He213)s12220-017-9874-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Epstein, Charles L. verfasserin aut Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Mathematica Josephina, Inc. 2017 Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of gene frequencies. Among the applications of our results is the description of the structure of the transition probabilities and of the hitting distributions of the underlying gene frequencies process. Degenerate elliptic operators A priori supremum estimates A priori Sobolev estimates Boundary regularity Pop, Camelia A. aut Enthalten in The journal of geometric analysis Springer US, 1991 30(2017), 3 vom: 07. Juni, Seite 2377-2421 (DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 1050-6926 nnns volume:30 year:2017 number:3 day:07 month:06 pages:2377-2421 https://doi.org/10.1007/s12220-017-9874-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_2088 GBV_ILN_2409 AR 30 2017 3 07 06 2377-2421 |
language |
English |
source |
Enthalten in The journal of geometric analysis 30(2017), 3 vom: 07. Juni, Seite 2377-2421 volume:30 year:2017 number:3 day:07 month:06 pages:2377-2421 |
sourceStr |
Enthalten in The journal of geometric analysis 30(2017), 3 vom: 07. Juni, Seite 2377-2421 volume:30 year:2017 number:3 day:07 month:06 pages:2377-2421 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Degenerate elliptic operators A priori supremum estimates A priori Sobolev estimates Boundary regularity |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
The journal of geometric analysis |
authorswithroles_txt_mv |
Epstein, Charles L. @@aut@@ Pop, Camelia A. @@aut@@ |
publishDateDaySort_date |
2017-06-07T00:00:00Z |
hierarchy_top_id |
131006398 |
dewey-sort |
3510 |
id |
OLC2058979028 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058979028</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504150825.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12220-017-9874-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058979028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s12220-017-9874-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Epstein, Charles L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Mathematica Josephina, Inc. 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of gene frequencies. Among the applications of our results is the description of the structure of the transition probabilities and of the hitting distributions of the underlying gene frequencies process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Degenerate elliptic operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A priori supremum estimates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A priori Sobolev estimates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary regularity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pop, Camelia A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of geometric analysis</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">30(2017), 3 vom: 07. Juni, Seite 2377-2421</subfield><subfield code="w">(DE-627)131006398</subfield><subfield code="w">(DE-600)1086949-9</subfield><subfield code="w">(DE-576)028039211</subfield><subfield code="x">1050-6926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2377-2421</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s12220-017-9874-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield><subfield code="h">2377-2421</subfield></datafield></record></collection>
|
author |
Epstein, Charles L. |
spellingShingle |
Epstein, Charles L. ddc 510 ssgn 17,1 misc Degenerate elliptic operators misc A priori supremum estimates misc A priori Sobolev estimates misc Boundary regularity Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions |
authorStr |
Epstein, Charles L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131006398 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1050-6926 |
topic_title |
510 VZ 17,1 ssgn Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions Degenerate elliptic operators A priori supremum estimates A priori Sobolev estimates Boundary regularity |
topic |
ddc 510 ssgn 17,1 misc Degenerate elliptic operators misc A priori supremum estimates misc A priori Sobolev estimates misc Boundary regularity |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Degenerate elliptic operators misc A priori supremum estimates misc A priori Sobolev estimates misc Boundary regularity |
topic_browse |
ddc 510 ssgn 17,1 misc Degenerate elliptic operators misc A priori supremum estimates misc A priori Sobolev estimates misc Boundary regularity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The journal of geometric analysis |
hierarchy_parent_id |
131006398 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
The journal of geometric analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 |
title |
Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions |
ctrlnum |
(DE-627)OLC2058979028 (DE-He213)s12220-017-9874-4-p |
title_full |
Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions |
author_sort |
Epstein, Charles L. |
journal |
The journal of geometric analysis |
journalStr |
The journal of geometric analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2377 |
author_browse |
Epstein, Charles L. Pop, Camelia A. |
container_volume |
30 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Epstein, Charles L. |
doi_str_mv |
10.1007/s12220-017-9874-4 |
dewey-full |
510 |
title_sort |
boundary estimates for a degenerate parabolic equation with partial dirichlet boundary conditions |
title_auth |
Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions |
abstract |
Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of gene frequencies. Among the applications of our results is the description of the structure of the transition probabilities and of the hitting distributions of the underlying gene frequencies process. © Mathematica Josephina, Inc. 2017 |
abstractGer |
Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of gene frequencies. Among the applications of our results is the description of the structure of the transition probabilities and of the hitting distributions of the underlying gene frequencies process. © Mathematica Josephina, Inc. 2017 |
abstract_unstemmed |
Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of gene frequencies. Among the applications of our results is the description of the structure of the transition probabilities and of the hitting distributions of the underlying gene frequencies process. © Mathematica Josephina, Inc. 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_2088 GBV_ILN_2409 |
container_issue |
3 |
title_short |
Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions |
url |
https://doi.org/10.1007/s12220-017-9874-4 |
remote_bool |
false |
author2 |
Pop, Camelia A. |
author2Str |
Pop, Camelia A. |
ppnlink |
131006398 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12220-017-9874-4 |
up_date |
2024-07-03T20:59:20.901Z |
_version_ |
1803593041473175552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2058979028</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504150825.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12220-017-9874-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2058979028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s12220-017-9874-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Epstein, Charles L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Mathematica Josephina, Inc. 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted $$L^2$$-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of gene frequencies. Among the applications of our results is the description of the structure of the transition probabilities and of the hitting distributions of the underlying gene frequencies process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Degenerate elliptic operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A priori supremum estimates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A priori Sobolev estimates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary regularity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pop, Camelia A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of geometric analysis</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">30(2017), 3 vom: 07. Juni, Seite 2377-2421</subfield><subfield code="w">(DE-627)131006398</subfield><subfield code="w">(DE-600)1086949-9</subfield><subfield code="w">(DE-576)028039211</subfield><subfield code="x">1050-6926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2377-2421</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s12220-017-9874-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield><subfield code="h">2377-2421</subfield></datafield></record></collection>
|
score |
7.401165 |