On the commutator subgroup of a nonconnected central group
Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is...
Ausführliche Beschreibung
Autor*in: |
Herfort, Wolfgang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1978 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 1978 |
---|
Übergeordnetes Werk: |
Enthalten in: Monatshefte für Mathematik - Springer-Verlag, 1948, 85(1978), 1 vom: März, Seite 49-51 |
---|---|
Übergeordnetes Werk: |
volume:85 ; year:1978 ; number:1 ; month:03 ; pages:49-51 |
Links: |
---|
DOI / URN: |
10.1007/BF01300960 |
---|
Katalog-ID: |
OLC2059489075 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2059489075 | ||
003 | DE-627 | ||
005 | 20230502131609.0 | ||
007 | tu | ||
008 | 200819s1978 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01300960 |2 doi | |
035 | |a (DE-627)OLC2059489075 | ||
035 | |a (DE-He213)BF01300960-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 7170 |q VZ |2 rvk | ||
084 | |a SA 7170 |q VZ |2 rvk | ||
100 | 1 | |a Herfort, Wolfgang |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the commutator subgroup of a nonconnected central group |
264 | 1 | |c 1978 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1978 | ||
520 | |a Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is compact ([6], [5]). The purpose of this paper is to show, that if the componentG0 of the identity is open,G′ must be compact, and to give an example of a compact group with (G/G0)′ compact, whileG′ is not compact. | ||
650 | 4 | |a Compact Group | |
650 | 4 | |a Central Group | |
650 | 4 | |a Commutator Subgroup | |
773 | 0 | 8 | |i Enthalten in |t Monatshefte für Mathematik |d Springer-Verlag, 1948 |g 85(1978), 1 vom: März, Seite 49-51 |w (DE-627)129492191 |w (DE-600)206474-1 |w (DE-576)014887657 |x 0026-9255 |7 nnns |
773 | 1 | 8 | |g volume:85 |g year:1978 |g number:1 |g month:03 |g pages:49-51 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01300960 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 7170 |
936 | r | v | |a SA 7170 |
951 | |a AR | ||
952 | |d 85 |j 1978 |e 1 |c 03 |h 49-51 |
author_variant |
w h wh |
---|---|
matchkey_str |
article:00269255:1978----::nhcmuaosbruoaocnet |
hierarchy_sort_str |
1978 |
publishDate |
1978 |
allfields |
10.1007/BF01300960 doi (DE-627)OLC2059489075 (DE-He213)BF01300960-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Herfort, Wolfgang verfasserin aut On the commutator subgroup of a nonconnected central group 1978 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1978 Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is compact ([6], [5]). The purpose of this paper is to show, that if the componentG0 of the identity is open,G′ must be compact, and to give an example of a compact group with (G/G0)′ compact, whileG′ is not compact. Compact Group Central Group Commutator Subgroup Enthalten in Monatshefte für Mathematik Springer-Verlag, 1948 85(1978), 1 vom: März, Seite 49-51 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:85 year:1978 number:1 month:03 pages:49-51 https://doi.org/10.1007/BF01300960 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 SA 7170 SA 7170 AR 85 1978 1 03 49-51 |
spelling |
10.1007/BF01300960 doi (DE-627)OLC2059489075 (DE-He213)BF01300960-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Herfort, Wolfgang verfasserin aut On the commutator subgroup of a nonconnected central group 1978 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1978 Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is compact ([6], [5]). The purpose of this paper is to show, that if the componentG0 of the identity is open,G′ must be compact, and to give an example of a compact group with (G/G0)′ compact, whileG′ is not compact. Compact Group Central Group Commutator Subgroup Enthalten in Monatshefte für Mathematik Springer-Verlag, 1948 85(1978), 1 vom: März, Seite 49-51 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:85 year:1978 number:1 month:03 pages:49-51 https://doi.org/10.1007/BF01300960 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 SA 7170 SA 7170 AR 85 1978 1 03 49-51 |
allfields_unstemmed |
10.1007/BF01300960 doi (DE-627)OLC2059489075 (DE-He213)BF01300960-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Herfort, Wolfgang verfasserin aut On the commutator subgroup of a nonconnected central group 1978 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1978 Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is compact ([6], [5]). The purpose of this paper is to show, that if the componentG0 of the identity is open,G′ must be compact, and to give an example of a compact group with (G/G0)′ compact, whileG′ is not compact. Compact Group Central Group Commutator Subgroup Enthalten in Monatshefte für Mathematik Springer-Verlag, 1948 85(1978), 1 vom: März, Seite 49-51 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:85 year:1978 number:1 month:03 pages:49-51 https://doi.org/10.1007/BF01300960 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 SA 7170 SA 7170 AR 85 1978 1 03 49-51 |
allfieldsGer |
10.1007/BF01300960 doi (DE-627)OLC2059489075 (DE-He213)BF01300960-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Herfort, Wolfgang verfasserin aut On the commutator subgroup of a nonconnected central group 1978 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1978 Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is compact ([6], [5]). The purpose of this paper is to show, that if the componentG0 of the identity is open,G′ must be compact, and to give an example of a compact group with (G/G0)′ compact, whileG′ is not compact. Compact Group Central Group Commutator Subgroup Enthalten in Monatshefte für Mathematik Springer-Verlag, 1948 85(1978), 1 vom: März, Seite 49-51 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:85 year:1978 number:1 month:03 pages:49-51 https://doi.org/10.1007/BF01300960 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 SA 7170 SA 7170 AR 85 1978 1 03 49-51 |
allfieldsSound |
10.1007/BF01300960 doi (DE-627)OLC2059489075 (DE-He213)BF01300960-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Herfort, Wolfgang verfasserin aut On the commutator subgroup of a nonconnected central group 1978 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1978 Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is compact ([6], [5]). The purpose of this paper is to show, that if the componentG0 of the identity is open,G′ must be compact, and to give an example of a compact group with (G/G0)′ compact, whileG′ is not compact. Compact Group Central Group Commutator Subgroup Enthalten in Monatshefte für Mathematik Springer-Verlag, 1948 85(1978), 1 vom: März, Seite 49-51 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:85 year:1978 number:1 month:03 pages:49-51 https://doi.org/10.1007/BF01300960 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 SA 7170 SA 7170 AR 85 1978 1 03 49-51 |
language |
English |
source |
Enthalten in Monatshefte für Mathematik 85(1978), 1 vom: März, Seite 49-51 volume:85 year:1978 number:1 month:03 pages:49-51 |
sourceStr |
Enthalten in Monatshefte für Mathematik 85(1978), 1 vom: März, Seite 49-51 volume:85 year:1978 number:1 month:03 pages:49-51 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Compact Group Central Group Commutator Subgroup |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Monatshefte für Mathematik |
authorswithroles_txt_mv |
Herfort, Wolfgang @@aut@@ |
publishDateDaySort_date |
1978-03-01T00:00:00Z |
hierarchy_top_id |
129492191 |
dewey-sort |
3510 |
id |
OLC2059489075 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059489075</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502131609.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1978 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01300960</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059489075</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01300960-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Herfort, Wolfgang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the commutator subgroup of a nonconnected central group</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1978</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1978</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is compact ([6], [5]). The purpose of this paper is to show, that if the componentG0 of the identity is open,G′ must be compact, and to give an example of a compact group with (G/G0)′ compact, whileG′ is not compact.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Central Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutator Subgroup</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Monatshefte für Mathematik</subfield><subfield code="d">Springer-Verlag, 1948</subfield><subfield code="g">85(1978), 1 vom: März, Seite 49-51</subfield><subfield code="w">(DE-627)129492191</subfield><subfield code="w">(DE-600)206474-1</subfield><subfield code="w">(DE-576)014887657</subfield><subfield code="x">0026-9255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:85</subfield><subfield code="g">year:1978</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:49-51</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01300960</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">85</subfield><subfield code="j">1978</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">49-51</subfield></datafield></record></collection>
|
author |
Herfort, Wolfgang |
spellingShingle |
Herfort, Wolfgang ddc 510 ssgn 17,1 rvk SA 7170 misc Compact Group misc Central Group misc Commutator Subgroup On the commutator subgroup of a nonconnected central group |
authorStr |
Herfort, Wolfgang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129492191 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0026-9255 |
topic_title |
510 VZ 17,1 ssgn SA 7170 VZ rvk On the commutator subgroup of a nonconnected central group Compact Group Central Group Commutator Subgroup |
topic |
ddc 510 ssgn 17,1 rvk SA 7170 misc Compact Group misc Central Group misc Commutator Subgroup |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 7170 misc Compact Group misc Central Group misc Commutator Subgroup |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 7170 misc Compact Group misc Central Group misc Commutator Subgroup |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Monatshefte für Mathematik |
hierarchy_parent_id |
129492191 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Monatshefte für Mathematik |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 |
title |
On the commutator subgroup of a nonconnected central group |
ctrlnum |
(DE-627)OLC2059489075 (DE-He213)BF01300960-p |
title_full |
On the commutator subgroup of a nonconnected central group |
author_sort |
Herfort, Wolfgang |
journal |
Monatshefte für Mathematik |
journalStr |
Monatshefte für Mathematik |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1978 |
contenttype_str_mv |
txt |
container_start_page |
49 |
author_browse |
Herfort, Wolfgang |
container_volume |
85 |
class |
510 VZ 17,1 ssgn SA 7170 VZ rvk |
format_se |
Aufsätze |
author-letter |
Herfort, Wolfgang |
doi_str_mv |
10.1007/BF01300960 |
dewey-full |
510 |
title_sort |
on the commutator subgroup of a nonconnected central group |
title_auth |
On the commutator subgroup of a nonconnected central group |
abstract |
Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is compact ([6], [5]). The purpose of this paper is to show, that if the componentG0 of the identity is open,G′ must be compact, and to give an example of a compact group with (G/G0)′ compact, whileG′ is not compact. © Springer-Verlag 1978 |
abstractGer |
Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is compact ([6], [5]). The purpose of this paper is to show, that if the componentG0 of the identity is open,G′ must be compact, and to give an example of a compact group with (G/G0)′ compact, whileG′ is not compact. © Springer-Verlag 1978 |
abstract_unstemmed |
Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is compact ([6], [5]). The purpose of this paper is to show, that if the componentG0 of the identity is open,G′ must be compact, and to give an example of a compact group with (G/G0)′ compact, whileG′ is not compact. © Springer-Verlag 1978 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
1 |
title_short |
On the commutator subgroup of a nonconnected central group |
url |
https://doi.org/10.1007/BF01300960 |
remote_bool |
false |
ppnlink |
129492191 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01300960 |
up_date |
2024-07-03T22:17:35.147Z |
_version_ |
1803597963746869248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059489075</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502131609.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1978 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01300960</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059489075</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01300960-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Herfort, Wolfgang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the commutator subgroup of a nonconnected central group</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1978</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1978</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paperG denotes a central topologicalT2-group—G/Z(G) compact, whereZ(G) is the center. There are some results concerning compactness of the commutator subgroupG′; in general (G′)− is compact ([3]), but not necessarilyG′ ([7]). If in additionG is a Lie group or ifG is connected,G′ is compact ([6], [5]). The purpose of this paper is to show, that if the componentG0 of the identity is open,G′ must be compact, and to give an example of a compact group with (G/G0)′ compact, whileG′ is not compact.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Central Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutator Subgroup</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Monatshefte für Mathematik</subfield><subfield code="d">Springer-Verlag, 1948</subfield><subfield code="g">85(1978), 1 vom: März, Seite 49-51</subfield><subfield code="w">(DE-627)129492191</subfield><subfield code="w">(DE-600)206474-1</subfield><subfield code="w">(DE-576)014887657</subfield><subfield code="x">0026-9255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:85</subfield><subfield code="g">year:1978</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:49-51</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01300960</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">85</subfield><subfield code="j">1978</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">49-51</subfield></datafield></record></collection>
|
score |
7.401106 |