Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces
Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$wh...
Ausführliche Beschreibung
Autor*in: |
Rajala, Tapio [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Monatshefte für Mathematik - Springer Vienna, 1948, 164(2010), 3 vom: 10. Dez., Seite 313-323 |
---|---|
Übergeordnetes Werk: |
volume:164 ; year:2010 ; number:3 ; day:10 ; month:12 ; pages:313-323 |
Links: |
---|
DOI / URN: |
10.1007/s00605-010-0271-3 |
---|
Katalog-ID: |
OLC2059510260 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2059510260 | ||
003 | DE-627 | ||
005 | 20230502131800.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00605-010-0271-3 |2 doi | |
035 | |a (DE-627)OLC2059510260 | ||
035 | |a (DE-He213)s00605-010-0271-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 7170 |q VZ |2 rvk | ||
084 | |a SA 7170 |q VZ |2 rvk | ||
100 | 1 | |a Rajala, Tapio |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2010 | ||
520 | |a Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$where 0 < s < 1/2 and the infimum is taken over all metric spaces X and sets $${E\subset X}$$ with $${0 < \mathcal{H}^s(E) < \infty}$$. As an immediate consequence we improve the upper bound for the lower s-density of such sets in $${\mathbb{R}^n}$$. | ||
650 | 4 | |a Hausdorff measure | |
650 | 4 | |a Packing measure | |
650 | 4 | |a Density | |
650 | 4 | |a Metric space | |
773 | 0 | 8 | |i Enthalten in |t Monatshefte für Mathematik |d Springer Vienna, 1948 |g 164(2010), 3 vom: 10. Dez., Seite 313-323 |w (DE-627)129492191 |w (DE-600)206474-1 |w (DE-576)014887657 |x 0026-9255 |7 nnns |
773 | 1 | 8 | |g volume:164 |g year:2010 |g number:3 |g day:10 |g month:12 |g pages:313-323 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00605-010-0271-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 7170 |
936 | r | v | |a SA 7170 |
951 | |a AR | ||
952 | |d 164 |j 2010 |e 3 |b 10 |c 12 |h 313-323 |
author_variant |
t r tr |
---|---|
matchkey_str |
article:00269255:2010----::oprnteasofadaknmaueostosali |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s00605-010-0271-3 doi (DE-627)OLC2059510260 (DE-He213)s00605-010-0271-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Rajala, Tapio verfasserin aut Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$where 0 < s < 1/2 and the infimum is taken over all metric spaces X and sets $${E\subset X}$$ with $${0 < \mathcal{H}^s(E) < \infty}$$. As an immediate consequence we improve the upper bound for the lower s-density of such sets in $${\mathbb{R}^n}$$. Hausdorff measure Packing measure Density Metric space Enthalten in Monatshefte für Mathematik Springer Vienna, 1948 164(2010), 3 vom: 10. Dez., Seite 313-323 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:164 year:2010 number:3 day:10 month:12 pages:313-323 https://doi.org/10.1007/s00605-010-0271-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4266 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 SA 7170 SA 7170 AR 164 2010 3 10 12 313-323 |
spelling |
10.1007/s00605-010-0271-3 doi (DE-627)OLC2059510260 (DE-He213)s00605-010-0271-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Rajala, Tapio verfasserin aut Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$where 0 < s < 1/2 and the infimum is taken over all metric spaces X and sets $${E\subset X}$$ with $${0 < \mathcal{H}^s(E) < \infty}$$. As an immediate consequence we improve the upper bound for the lower s-density of such sets in $${\mathbb{R}^n}$$. Hausdorff measure Packing measure Density Metric space Enthalten in Monatshefte für Mathematik Springer Vienna, 1948 164(2010), 3 vom: 10. Dez., Seite 313-323 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:164 year:2010 number:3 day:10 month:12 pages:313-323 https://doi.org/10.1007/s00605-010-0271-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4266 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 SA 7170 SA 7170 AR 164 2010 3 10 12 313-323 |
allfields_unstemmed |
10.1007/s00605-010-0271-3 doi (DE-627)OLC2059510260 (DE-He213)s00605-010-0271-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Rajala, Tapio verfasserin aut Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$where 0 < s < 1/2 and the infimum is taken over all metric spaces X and sets $${E\subset X}$$ with $${0 < \mathcal{H}^s(E) < \infty}$$. As an immediate consequence we improve the upper bound for the lower s-density of such sets in $${\mathbb{R}^n}$$. Hausdorff measure Packing measure Density Metric space Enthalten in Monatshefte für Mathematik Springer Vienna, 1948 164(2010), 3 vom: 10. Dez., Seite 313-323 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:164 year:2010 number:3 day:10 month:12 pages:313-323 https://doi.org/10.1007/s00605-010-0271-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4266 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 SA 7170 SA 7170 AR 164 2010 3 10 12 313-323 |
allfieldsGer |
10.1007/s00605-010-0271-3 doi (DE-627)OLC2059510260 (DE-He213)s00605-010-0271-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Rajala, Tapio verfasserin aut Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$where 0 < s < 1/2 and the infimum is taken over all metric spaces X and sets $${E\subset X}$$ with $${0 < \mathcal{H}^s(E) < \infty}$$. As an immediate consequence we improve the upper bound for the lower s-density of such sets in $${\mathbb{R}^n}$$. Hausdorff measure Packing measure Density Metric space Enthalten in Monatshefte für Mathematik Springer Vienna, 1948 164(2010), 3 vom: 10. Dez., Seite 313-323 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:164 year:2010 number:3 day:10 month:12 pages:313-323 https://doi.org/10.1007/s00605-010-0271-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4266 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 SA 7170 SA 7170 AR 164 2010 3 10 12 313-323 |
allfieldsSound |
10.1007/s00605-010-0271-3 doi (DE-627)OLC2059510260 (DE-He213)s00605-010-0271-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Rajala, Tapio verfasserin aut Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$where 0 < s < 1/2 and the infimum is taken over all metric spaces X and sets $${E\subset X}$$ with $${0 < \mathcal{H}^s(E) < \infty}$$. As an immediate consequence we improve the upper bound for the lower s-density of such sets in $${\mathbb{R}^n}$$. Hausdorff measure Packing measure Density Metric space Enthalten in Monatshefte für Mathematik Springer Vienna, 1948 164(2010), 3 vom: 10. Dez., Seite 313-323 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:164 year:2010 number:3 day:10 month:12 pages:313-323 https://doi.org/10.1007/s00605-010-0271-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4266 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 SA 7170 SA 7170 AR 164 2010 3 10 12 313-323 |
language |
English |
source |
Enthalten in Monatshefte für Mathematik 164(2010), 3 vom: 10. Dez., Seite 313-323 volume:164 year:2010 number:3 day:10 month:12 pages:313-323 |
sourceStr |
Enthalten in Monatshefte für Mathematik 164(2010), 3 vom: 10. Dez., Seite 313-323 volume:164 year:2010 number:3 day:10 month:12 pages:313-323 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hausdorff measure Packing measure Density Metric space |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Monatshefte für Mathematik |
authorswithroles_txt_mv |
Rajala, Tapio @@aut@@ |
publishDateDaySort_date |
2010-12-10T00:00:00Z |
hierarchy_top_id |
129492191 |
dewey-sort |
3510 |
id |
OLC2059510260 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059510260</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502131800.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00605-010-0271-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059510260</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00605-010-0271-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rajala, Tapio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$where 0 < s < 1/2 and the infimum is taken over all metric spaces X and sets $${E\subset X}$$ with $${0 < \mathcal{H}^s(E) < \infty}$$. As an immediate consequence we improve the upper bound for the lower s-density of such sets in $${\mathbb{R}^n}$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hausdorff measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Packing measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric space</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Monatshefte für Mathematik</subfield><subfield code="d">Springer Vienna, 1948</subfield><subfield code="g">164(2010), 3 vom: 10. Dez., Seite 313-323</subfield><subfield code="w">(DE-627)129492191</subfield><subfield code="w">(DE-600)206474-1</subfield><subfield code="w">(DE-576)014887657</subfield><subfield code="x">0026-9255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:164</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">day:10</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:313-323</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00605-010-0271-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">164</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="b">10</subfield><subfield code="c">12</subfield><subfield code="h">313-323</subfield></datafield></record></collection>
|
author |
Rajala, Tapio |
spellingShingle |
Rajala, Tapio ddc 510 ssgn 17,1 rvk SA 7170 misc Hausdorff measure misc Packing measure misc Density misc Metric space Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces |
authorStr |
Rajala, Tapio |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129492191 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0026-9255 |
topic_title |
510 VZ 17,1 ssgn SA 7170 VZ rvk Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces Hausdorff measure Packing measure Density Metric space |
topic |
ddc 510 ssgn 17,1 rvk SA 7170 misc Hausdorff measure misc Packing measure misc Density misc Metric space |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 7170 misc Hausdorff measure misc Packing measure misc Density misc Metric space |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 7170 misc Hausdorff measure misc Packing measure misc Density misc Metric space |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Monatshefte für Mathematik |
hierarchy_parent_id |
129492191 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Monatshefte für Mathematik |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 |
title |
Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces |
ctrlnum |
(DE-627)OLC2059510260 (DE-He213)s00605-010-0271-3-p |
title_full |
Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces |
author_sort |
Rajala, Tapio |
journal |
Monatshefte für Mathematik |
journalStr |
Monatshefte für Mathematik |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
313 |
author_browse |
Rajala, Tapio |
container_volume |
164 |
class |
510 VZ 17,1 ssgn SA 7170 VZ rvk |
format_se |
Aufsätze |
author-letter |
Rajala, Tapio |
doi_str_mv |
10.1007/s00605-010-0271-3 |
dewey-full |
510 |
title_sort |
comparing the hausdorff and packing measures of sets of small dimension in metric spaces |
title_auth |
Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces |
abstract |
Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$where 0 < s < 1/2 and the infimum is taken over all metric spaces X and sets $${E\subset X}$$ with $${0 < \mathcal{H}^s(E) < \infty}$$. As an immediate consequence we improve the upper bound for the lower s-density of such sets in $${\mathbb{R}^n}$$. © Springer-Verlag 2010 |
abstractGer |
Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$where 0 < s < 1/2 and the infimum is taken over all metric spaces X and sets $${E\subset X}$$ with $${0 < \mathcal{H}^s(E) < \infty}$$. As an immediate consequence we improve the upper bound for the lower s-density of such sets in $${\mathbb{R}^n}$$. © Springer-Verlag 2010 |
abstract_unstemmed |
Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$where 0 < s < 1/2 and the infimum is taken over all metric spaces X and sets $${E\subset X}$$ with $${0 < \mathcal{H}^s(E) < \infty}$$. As an immediate consequence we improve the upper bound for the lower s-density of such sets in $${\mathbb{R}^n}$$. © Springer-Verlag 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4266 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces |
url |
https://doi.org/10.1007/s00605-010-0271-3 |
remote_bool |
false |
ppnlink |
129492191 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00605-010-0271-3 |
up_date |
2024-07-03T22:21:47.038Z |
_version_ |
1803598227873726465 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059510260</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502131800.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00605-010-0271-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059510260</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00605-010-0271-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rajala, Tapio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in any metric space. This estimate is$$ \inf_{E}\frac{\mathcal{P}^s(E)}{\mathcal{H}^s(E)}\ge 1+\left(2-\frac{3}{2^{1/s}}\right)^s, $$where 0 < s < 1/2 and the infimum is taken over all metric spaces X and sets $${E\subset X}$$ with $${0 < \mathcal{H}^s(E) < \infty}$$. As an immediate consequence we improve the upper bound for the lower s-density of such sets in $${\mathbb{R}^n}$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hausdorff measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Packing measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric space</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Monatshefte für Mathematik</subfield><subfield code="d">Springer Vienna, 1948</subfield><subfield code="g">164(2010), 3 vom: 10. Dez., Seite 313-323</subfield><subfield code="w">(DE-627)129492191</subfield><subfield code="w">(DE-600)206474-1</subfield><subfield code="w">(DE-576)014887657</subfield><subfield code="x">0026-9255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:164</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">day:10</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:313-323</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00605-010-0271-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">164</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="b">10</subfield><subfield code="c">12</subfield><subfield code="h">313-323</subfield></datafield></record></collection>
|
score |
7.4013834 |