A Control Forced Concurrent Precursor Method for LES Inflow
Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor...
Ausführliche Beschreibung
Autor*in: |
Haywood, John S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature B.V. 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Flow, turbulence and combustion - Springer Netherlands, 1998, 102(2018), 4 vom: 30. Okt., Seite 849-864 |
---|---|
Übergeordnetes Werk: |
volume:102 ; year:2018 ; number:4 ; day:30 ; month:10 ; pages:849-864 |
Links: |
---|
DOI / URN: |
10.1007/s10494-018-9986-3 |
---|
Katalog-ID: |
OLC2059578663 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2059578663 | ||
003 | DE-627 | ||
005 | 20230502205743.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10494-018-9986-3 |2 doi | |
035 | |a (DE-627)OLC2059578663 | ||
035 | |a (DE-He213)s10494-018-9986-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |a 600 |q VZ |
084 | |a 50.34$jGasdynamik$jAerodynamik |2 bkl | ||
084 | |a 52.51$jFeuerungstechnik |2 bkl | ||
100 | 1 | |a Haywood, John S. |e verfasserin |0 (orcid)0000-0002-5740-6875 |4 aut | |
245 | 1 | 0 | |a A Control Forced Concurrent Precursor Method for LES Inflow |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Nature B.V. 2018 | ||
520 | |a Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor method and a mean flow forcing method with a new extension of the controlled forcing method to impose turbulent inflow boundary conditions primarily, although not exclusively, for domains that require periodic boundary conditions. Turbulent inflow boundary conditions are imposed through a region of body forces added to the momentum equations of the main simulation that transfers the precursor simulation into the main domain. Controlled forcing planes, which come into play as body forces added to the momentum equations on planes perpendicular to the flow, located in the precursor simulation, allow for specific Reynolds stress tensors and mean velocities to be imposed. The mean flow controlled forcing method only modifies the mean velocity profiles, leaving the fluctuating velocity field untouched. The proposed fluctuating flow controlled forcing methods extends the application of the original controlled forcing method to multiple fluctuating velocity components and couples their calculation in order to amplify the existing fluctuations present in the precursor flow field so that prescribed anisotropic Reynolds stress tensors can be reproduced. The new method was tested on high Reynolds number turbulent boundary layer flow over a wall-mounted cube and low Reynolds number turbulent boundary layer flow over a backward-facing step. It was found that the new extension of the controlled forcing method reduced the development time for both test cases considered here when compared to not using controlled forcing and only using the original controlled forcing method. | ||
650 | 4 | |a Controlled forcing | |
650 | 4 | |a Concurrent precursor method | |
650 | 4 | |a Turbulent inflow | |
700 | 1 | |a Sescu, Adrian |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Flow, turbulence and combustion |d Springer Netherlands, 1998 |g 102(2018), 4 vom: 30. Okt., Seite 849-864 |w (DE-627)254303641 |w (DE-600)1463163-5 |w (DE-576)074754068 |x 1386-6184 |7 nnns |
773 | 1 | 8 | |g volume:102 |g year:2018 |g number:4 |g day:30 |g month:10 |g pages:849-864 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10494-018-9986-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.34$jGasdynamik$jAerodynamik |q VZ |0 106419498 |0 (DE-625)106419498 |
936 | b | k | |a 52.51$jFeuerungstechnik |q VZ |0 106419935 |0 (DE-625)106419935 |
951 | |a AR | ||
952 | |d 102 |j 2018 |e 4 |b 30 |c 10 |h 849-864 |
author_variant |
j s h js jsh a s as |
---|---|
matchkey_str |
article:13866184:2018----::cnrlocdocretrcromt |
hierarchy_sort_str |
2018 |
bklnumber |
50.34$jGasdynamik$jAerodynamik 52.51$jFeuerungstechnik |
publishDate |
2018 |
allfields |
10.1007/s10494-018-9986-3 doi (DE-627)OLC2059578663 (DE-He213)s10494-018-9986-3-p DE-627 ger DE-627 rakwb eng 500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl Haywood, John S. verfasserin (orcid)0000-0002-5740-6875 aut A Control Forced Concurrent Precursor Method for LES Inflow 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2018 Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor method and a mean flow forcing method with a new extension of the controlled forcing method to impose turbulent inflow boundary conditions primarily, although not exclusively, for domains that require periodic boundary conditions. Turbulent inflow boundary conditions are imposed through a region of body forces added to the momentum equations of the main simulation that transfers the precursor simulation into the main domain. Controlled forcing planes, which come into play as body forces added to the momentum equations on planes perpendicular to the flow, located in the precursor simulation, allow for specific Reynolds stress tensors and mean velocities to be imposed. The mean flow controlled forcing method only modifies the mean velocity profiles, leaving the fluctuating velocity field untouched. The proposed fluctuating flow controlled forcing methods extends the application of the original controlled forcing method to multiple fluctuating velocity components and couples their calculation in order to amplify the existing fluctuations present in the precursor flow field so that prescribed anisotropic Reynolds stress tensors can be reproduced. The new method was tested on high Reynolds number turbulent boundary layer flow over a wall-mounted cube and low Reynolds number turbulent boundary layer flow over a backward-facing step. It was found that the new extension of the controlled forcing method reduced the development time for both test cases considered here when compared to not using controlled forcing and only using the original controlled forcing method. Controlled forcing Concurrent precursor method Turbulent inflow Sescu, Adrian aut Enthalten in Flow, turbulence and combustion Springer Netherlands, 1998 102(2018), 4 vom: 30. Okt., Seite 849-864 (DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 1386-6184 nnns volume:102 year:2018 number:4 day:30 month:10 pages:849-864 https://doi.org/10.1007/s10494-018-9986-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_11 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_4323 GBV_ILN_4700 50.34$jGasdynamik$jAerodynamik VZ 106419498 (DE-625)106419498 52.51$jFeuerungstechnik VZ 106419935 (DE-625)106419935 AR 102 2018 4 30 10 849-864 |
spelling |
10.1007/s10494-018-9986-3 doi (DE-627)OLC2059578663 (DE-He213)s10494-018-9986-3-p DE-627 ger DE-627 rakwb eng 500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl Haywood, John S. verfasserin (orcid)0000-0002-5740-6875 aut A Control Forced Concurrent Precursor Method for LES Inflow 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2018 Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor method and a mean flow forcing method with a new extension of the controlled forcing method to impose turbulent inflow boundary conditions primarily, although not exclusively, for domains that require periodic boundary conditions. Turbulent inflow boundary conditions are imposed through a region of body forces added to the momentum equations of the main simulation that transfers the precursor simulation into the main domain. Controlled forcing planes, which come into play as body forces added to the momentum equations on planes perpendicular to the flow, located in the precursor simulation, allow for specific Reynolds stress tensors and mean velocities to be imposed. The mean flow controlled forcing method only modifies the mean velocity profiles, leaving the fluctuating velocity field untouched. The proposed fluctuating flow controlled forcing methods extends the application of the original controlled forcing method to multiple fluctuating velocity components and couples their calculation in order to amplify the existing fluctuations present in the precursor flow field so that prescribed anisotropic Reynolds stress tensors can be reproduced. The new method was tested on high Reynolds number turbulent boundary layer flow over a wall-mounted cube and low Reynolds number turbulent boundary layer flow over a backward-facing step. It was found that the new extension of the controlled forcing method reduced the development time for both test cases considered here when compared to not using controlled forcing and only using the original controlled forcing method. Controlled forcing Concurrent precursor method Turbulent inflow Sescu, Adrian aut Enthalten in Flow, turbulence and combustion Springer Netherlands, 1998 102(2018), 4 vom: 30. Okt., Seite 849-864 (DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 1386-6184 nnns volume:102 year:2018 number:4 day:30 month:10 pages:849-864 https://doi.org/10.1007/s10494-018-9986-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_11 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_4323 GBV_ILN_4700 50.34$jGasdynamik$jAerodynamik VZ 106419498 (DE-625)106419498 52.51$jFeuerungstechnik VZ 106419935 (DE-625)106419935 AR 102 2018 4 30 10 849-864 |
allfields_unstemmed |
10.1007/s10494-018-9986-3 doi (DE-627)OLC2059578663 (DE-He213)s10494-018-9986-3-p DE-627 ger DE-627 rakwb eng 500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl Haywood, John S. verfasserin (orcid)0000-0002-5740-6875 aut A Control Forced Concurrent Precursor Method for LES Inflow 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2018 Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor method and a mean flow forcing method with a new extension of the controlled forcing method to impose turbulent inflow boundary conditions primarily, although not exclusively, for domains that require periodic boundary conditions. Turbulent inflow boundary conditions are imposed through a region of body forces added to the momentum equations of the main simulation that transfers the precursor simulation into the main domain. Controlled forcing planes, which come into play as body forces added to the momentum equations on planes perpendicular to the flow, located in the precursor simulation, allow for specific Reynolds stress tensors and mean velocities to be imposed. The mean flow controlled forcing method only modifies the mean velocity profiles, leaving the fluctuating velocity field untouched. The proposed fluctuating flow controlled forcing methods extends the application of the original controlled forcing method to multiple fluctuating velocity components and couples their calculation in order to amplify the existing fluctuations present in the precursor flow field so that prescribed anisotropic Reynolds stress tensors can be reproduced. The new method was tested on high Reynolds number turbulent boundary layer flow over a wall-mounted cube and low Reynolds number turbulent boundary layer flow over a backward-facing step. It was found that the new extension of the controlled forcing method reduced the development time for both test cases considered here when compared to not using controlled forcing and only using the original controlled forcing method. Controlled forcing Concurrent precursor method Turbulent inflow Sescu, Adrian aut Enthalten in Flow, turbulence and combustion Springer Netherlands, 1998 102(2018), 4 vom: 30. Okt., Seite 849-864 (DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 1386-6184 nnns volume:102 year:2018 number:4 day:30 month:10 pages:849-864 https://doi.org/10.1007/s10494-018-9986-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_11 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_4323 GBV_ILN_4700 50.34$jGasdynamik$jAerodynamik VZ 106419498 (DE-625)106419498 52.51$jFeuerungstechnik VZ 106419935 (DE-625)106419935 AR 102 2018 4 30 10 849-864 |
allfieldsGer |
10.1007/s10494-018-9986-3 doi (DE-627)OLC2059578663 (DE-He213)s10494-018-9986-3-p DE-627 ger DE-627 rakwb eng 500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl Haywood, John S. verfasserin (orcid)0000-0002-5740-6875 aut A Control Forced Concurrent Precursor Method for LES Inflow 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2018 Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor method and a mean flow forcing method with a new extension of the controlled forcing method to impose turbulent inflow boundary conditions primarily, although not exclusively, for domains that require periodic boundary conditions. Turbulent inflow boundary conditions are imposed through a region of body forces added to the momentum equations of the main simulation that transfers the precursor simulation into the main domain. Controlled forcing planes, which come into play as body forces added to the momentum equations on planes perpendicular to the flow, located in the precursor simulation, allow for specific Reynolds stress tensors and mean velocities to be imposed. The mean flow controlled forcing method only modifies the mean velocity profiles, leaving the fluctuating velocity field untouched. The proposed fluctuating flow controlled forcing methods extends the application of the original controlled forcing method to multiple fluctuating velocity components and couples their calculation in order to amplify the existing fluctuations present in the precursor flow field so that prescribed anisotropic Reynolds stress tensors can be reproduced. The new method was tested on high Reynolds number turbulent boundary layer flow over a wall-mounted cube and low Reynolds number turbulent boundary layer flow over a backward-facing step. It was found that the new extension of the controlled forcing method reduced the development time for both test cases considered here when compared to not using controlled forcing and only using the original controlled forcing method. Controlled forcing Concurrent precursor method Turbulent inflow Sescu, Adrian aut Enthalten in Flow, turbulence and combustion Springer Netherlands, 1998 102(2018), 4 vom: 30. Okt., Seite 849-864 (DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 1386-6184 nnns volume:102 year:2018 number:4 day:30 month:10 pages:849-864 https://doi.org/10.1007/s10494-018-9986-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_11 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_4323 GBV_ILN_4700 50.34$jGasdynamik$jAerodynamik VZ 106419498 (DE-625)106419498 52.51$jFeuerungstechnik VZ 106419935 (DE-625)106419935 AR 102 2018 4 30 10 849-864 |
allfieldsSound |
10.1007/s10494-018-9986-3 doi (DE-627)OLC2059578663 (DE-He213)s10494-018-9986-3-p DE-627 ger DE-627 rakwb eng 500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl Haywood, John S. verfasserin (orcid)0000-0002-5740-6875 aut A Control Forced Concurrent Precursor Method for LES Inflow 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2018 Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor method and a mean flow forcing method with a new extension of the controlled forcing method to impose turbulent inflow boundary conditions primarily, although not exclusively, for domains that require periodic boundary conditions. Turbulent inflow boundary conditions are imposed through a region of body forces added to the momentum equations of the main simulation that transfers the precursor simulation into the main domain. Controlled forcing planes, which come into play as body forces added to the momentum equations on planes perpendicular to the flow, located in the precursor simulation, allow for specific Reynolds stress tensors and mean velocities to be imposed. The mean flow controlled forcing method only modifies the mean velocity profiles, leaving the fluctuating velocity field untouched. The proposed fluctuating flow controlled forcing methods extends the application of the original controlled forcing method to multiple fluctuating velocity components and couples their calculation in order to amplify the existing fluctuations present in the precursor flow field so that prescribed anisotropic Reynolds stress tensors can be reproduced. The new method was tested on high Reynolds number turbulent boundary layer flow over a wall-mounted cube and low Reynolds number turbulent boundary layer flow over a backward-facing step. It was found that the new extension of the controlled forcing method reduced the development time for both test cases considered here when compared to not using controlled forcing and only using the original controlled forcing method. Controlled forcing Concurrent precursor method Turbulent inflow Sescu, Adrian aut Enthalten in Flow, turbulence and combustion Springer Netherlands, 1998 102(2018), 4 vom: 30. Okt., Seite 849-864 (DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 1386-6184 nnns volume:102 year:2018 number:4 day:30 month:10 pages:849-864 https://doi.org/10.1007/s10494-018-9986-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_11 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_4323 GBV_ILN_4700 50.34$jGasdynamik$jAerodynamik VZ 106419498 (DE-625)106419498 52.51$jFeuerungstechnik VZ 106419935 (DE-625)106419935 AR 102 2018 4 30 10 849-864 |
language |
English |
source |
Enthalten in Flow, turbulence and combustion 102(2018), 4 vom: 30. Okt., Seite 849-864 volume:102 year:2018 number:4 day:30 month:10 pages:849-864 |
sourceStr |
Enthalten in Flow, turbulence and combustion 102(2018), 4 vom: 30. Okt., Seite 849-864 volume:102 year:2018 number:4 day:30 month:10 pages:849-864 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Controlled forcing Concurrent precursor method Turbulent inflow |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Flow, turbulence and combustion |
authorswithroles_txt_mv |
Haywood, John S. @@aut@@ Sescu, Adrian @@aut@@ |
publishDateDaySort_date |
2018-10-30T00:00:00Z |
hierarchy_top_id |
254303641 |
dewey-sort |
3500 |
id |
OLC2059578663 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059578663</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502205743.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10494-018-9986-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059578663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10494-018-9986-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.34$jGasdynamik$jAerodynamik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.51$jFeuerungstechnik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haywood, John S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5740-6875</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Control Forced Concurrent Precursor Method for LES Inflow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor method and a mean flow forcing method with a new extension of the controlled forcing method to impose turbulent inflow boundary conditions primarily, although not exclusively, for domains that require periodic boundary conditions. Turbulent inflow boundary conditions are imposed through a region of body forces added to the momentum equations of the main simulation that transfers the precursor simulation into the main domain. Controlled forcing planes, which come into play as body forces added to the momentum equations on planes perpendicular to the flow, located in the precursor simulation, allow for specific Reynolds stress tensors and mean velocities to be imposed. The mean flow controlled forcing method only modifies the mean velocity profiles, leaving the fluctuating velocity field untouched. The proposed fluctuating flow controlled forcing methods extends the application of the original controlled forcing method to multiple fluctuating velocity components and couples their calculation in order to amplify the existing fluctuations present in the precursor flow field so that prescribed anisotropic Reynolds stress tensors can be reproduced. The new method was tested on high Reynolds number turbulent boundary layer flow over a wall-mounted cube and low Reynolds number turbulent boundary layer flow over a backward-facing step. It was found that the new extension of the controlled forcing method reduced the development time for both test cases considered here when compared to not using controlled forcing and only using the original controlled forcing method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Controlled forcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concurrent precursor method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulent inflow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sescu, Adrian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Flow, turbulence and combustion</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">102(2018), 4 vom: 30. Okt., Seite 849-864</subfield><subfield code="w">(DE-627)254303641</subfield><subfield code="w">(DE-600)1463163-5</subfield><subfield code="w">(DE-576)074754068</subfield><subfield code="x">1386-6184</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:102</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:849-864</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10494-018-9986-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.34$jGasdynamik$jAerodynamik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419498</subfield><subfield code="0">(DE-625)106419498</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.51$jFeuerungstechnik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419935</subfield><subfield code="0">(DE-625)106419935</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">102</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="b">30</subfield><subfield code="c">10</subfield><subfield code="h">849-864</subfield></datafield></record></collection>
|
author |
Haywood, John S. |
spellingShingle |
Haywood, John S. ddc 500 bkl 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik misc Controlled forcing misc Concurrent precursor method misc Turbulent inflow A Control Forced Concurrent Precursor Method for LES Inflow |
authorStr |
Haywood, John S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254303641 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1386-6184 |
topic_title |
500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl A Control Forced Concurrent Precursor Method for LES Inflow Controlled forcing Concurrent precursor method Turbulent inflow |
topic |
ddc 500 bkl 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik misc Controlled forcing misc Concurrent precursor method misc Turbulent inflow |
topic_unstemmed |
ddc 500 bkl 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik misc Controlled forcing misc Concurrent precursor method misc Turbulent inflow |
topic_browse |
ddc 500 bkl 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik misc Controlled forcing misc Concurrent precursor method misc Turbulent inflow |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Flow, turbulence and combustion |
hierarchy_parent_id |
254303641 |
dewey-tens |
500 - Science 600 - Technology |
hierarchy_top_title |
Flow, turbulence and combustion |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 |
title |
A Control Forced Concurrent Precursor Method for LES Inflow |
ctrlnum |
(DE-627)OLC2059578663 (DE-He213)s10494-018-9986-3-p |
title_full |
A Control Forced Concurrent Precursor Method for LES Inflow |
author_sort |
Haywood, John S. |
journal |
Flow, turbulence and combustion |
journalStr |
Flow, turbulence and combustion |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
849 |
author_browse |
Haywood, John S. Sescu, Adrian |
container_volume |
102 |
class |
500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl |
format_se |
Aufsätze |
author-letter |
Haywood, John S. |
doi_str_mv |
10.1007/s10494-018-9986-3 |
normlink |
(ORCID)0000-0002-5740-6875 106419498 106419935 |
normlink_prefix_str_mv |
(orcid)0000-0002-5740-6875 106419498 (DE-625)106419498 106419935 (DE-625)106419935 |
dewey-full |
500 600 |
title_sort |
a control forced concurrent precursor method for les inflow |
title_auth |
A Control Forced Concurrent Precursor Method for LES Inflow |
abstract |
Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor method and a mean flow forcing method with a new extension of the controlled forcing method to impose turbulent inflow boundary conditions primarily, although not exclusively, for domains that require periodic boundary conditions. Turbulent inflow boundary conditions are imposed through a region of body forces added to the momentum equations of the main simulation that transfers the precursor simulation into the main domain. Controlled forcing planes, which come into play as body forces added to the momentum equations on planes perpendicular to the flow, located in the precursor simulation, allow for specific Reynolds stress tensors and mean velocities to be imposed. The mean flow controlled forcing method only modifies the mean velocity profiles, leaving the fluctuating velocity field untouched. The proposed fluctuating flow controlled forcing methods extends the application of the original controlled forcing method to multiple fluctuating velocity components and couples their calculation in order to amplify the existing fluctuations present in the precursor flow field so that prescribed anisotropic Reynolds stress tensors can be reproduced. The new method was tested on high Reynolds number turbulent boundary layer flow over a wall-mounted cube and low Reynolds number turbulent boundary layer flow over a backward-facing step. It was found that the new extension of the controlled forcing method reduced the development time for both test cases considered here when compared to not using controlled forcing and only using the original controlled forcing method. © Springer Nature B.V. 2018 |
abstractGer |
Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor method and a mean flow forcing method with a new extension of the controlled forcing method to impose turbulent inflow boundary conditions primarily, although not exclusively, for domains that require periodic boundary conditions. Turbulent inflow boundary conditions are imposed through a region of body forces added to the momentum equations of the main simulation that transfers the precursor simulation into the main domain. Controlled forcing planes, which come into play as body forces added to the momentum equations on planes perpendicular to the flow, located in the precursor simulation, allow for specific Reynolds stress tensors and mean velocities to be imposed. The mean flow controlled forcing method only modifies the mean velocity profiles, leaving the fluctuating velocity field untouched. The proposed fluctuating flow controlled forcing methods extends the application of the original controlled forcing method to multiple fluctuating velocity components and couples their calculation in order to amplify the existing fluctuations present in the precursor flow field so that prescribed anisotropic Reynolds stress tensors can be reproduced. The new method was tested on high Reynolds number turbulent boundary layer flow over a wall-mounted cube and low Reynolds number turbulent boundary layer flow over a backward-facing step. It was found that the new extension of the controlled forcing method reduced the development time for both test cases considered here when compared to not using controlled forcing and only using the original controlled forcing method. © Springer Nature B.V. 2018 |
abstract_unstemmed |
Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor method and a mean flow forcing method with a new extension of the controlled forcing method to impose turbulent inflow boundary conditions primarily, although not exclusively, for domains that require periodic boundary conditions. Turbulent inflow boundary conditions are imposed through a region of body forces added to the momentum equations of the main simulation that transfers the precursor simulation into the main domain. Controlled forcing planes, which come into play as body forces added to the momentum equations on planes perpendicular to the flow, located in the precursor simulation, allow for specific Reynolds stress tensors and mean velocities to be imposed. The mean flow controlled forcing method only modifies the mean velocity profiles, leaving the fluctuating velocity field untouched. The proposed fluctuating flow controlled forcing methods extends the application of the original controlled forcing method to multiple fluctuating velocity components and couples their calculation in order to amplify the existing fluctuations present in the precursor flow field so that prescribed anisotropic Reynolds stress tensors can be reproduced. The new method was tested on high Reynolds number turbulent boundary layer flow over a wall-mounted cube and low Reynolds number turbulent boundary layer flow over a backward-facing step. It was found that the new extension of the controlled forcing method reduced the development time for both test cases considered here when compared to not using controlled forcing and only using the original controlled forcing method. © Springer Nature B.V. 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_11 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
4 |
title_short |
A Control Forced Concurrent Precursor Method for LES Inflow |
url |
https://doi.org/10.1007/s10494-018-9986-3 |
remote_bool |
false |
author2 |
Sescu, Adrian |
author2Str |
Sescu, Adrian |
ppnlink |
254303641 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10494-018-9986-3 |
up_date |
2024-07-03T22:37:44.332Z |
_version_ |
1803599231668191232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059578663</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502205743.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10494-018-9986-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059578663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10494-018-9986-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.34$jGasdynamik$jAerodynamik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.51$jFeuerungstechnik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haywood, John S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5740-6875</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Control Forced Concurrent Precursor Method for LES Inflow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With the increased application of large eddy simulation techniques, the generation of realistic turbulence at inflow boundaries is crucial for the accuracy of a simulation. The Control Forced Concurrent Precursor Method (CFCPM) proposed in this work combines an existing concurrent precursor method and a mean flow forcing method with a new extension of the controlled forcing method to impose turbulent inflow boundary conditions primarily, although not exclusively, for domains that require periodic boundary conditions. Turbulent inflow boundary conditions are imposed through a region of body forces added to the momentum equations of the main simulation that transfers the precursor simulation into the main domain. Controlled forcing planes, which come into play as body forces added to the momentum equations on planes perpendicular to the flow, located in the precursor simulation, allow for specific Reynolds stress tensors and mean velocities to be imposed. The mean flow controlled forcing method only modifies the mean velocity profiles, leaving the fluctuating velocity field untouched. The proposed fluctuating flow controlled forcing methods extends the application of the original controlled forcing method to multiple fluctuating velocity components and couples their calculation in order to amplify the existing fluctuations present in the precursor flow field so that prescribed anisotropic Reynolds stress tensors can be reproduced. The new method was tested on high Reynolds number turbulent boundary layer flow over a wall-mounted cube and low Reynolds number turbulent boundary layer flow over a backward-facing step. It was found that the new extension of the controlled forcing method reduced the development time for both test cases considered here when compared to not using controlled forcing and only using the original controlled forcing method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Controlled forcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concurrent precursor method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulent inflow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sescu, Adrian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Flow, turbulence and combustion</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">102(2018), 4 vom: 30. Okt., Seite 849-864</subfield><subfield code="w">(DE-627)254303641</subfield><subfield code="w">(DE-600)1463163-5</subfield><subfield code="w">(DE-576)074754068</subfield><subfield code="x">1386-6184</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:102</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:849-864</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10494-018-9986-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.34$jGasdynamik$jAerodynamik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419498</subfield><subfield code="0">(DE-625)106419498</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.51$jFeuerungstechnik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419935</subfield><subfield code="0">(DE-625)106419935</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">102</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="b">30</subfield><subfield code="c">10</subfield><subfield code="h">849-864</subfield></datafield></record></collection>
|
score |
7.4021063 |