A multilateral Bailey lemma and multiple Andrews–Gordon identities
Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form...
Ausführliche Beschreibung
Autor*in: |
Coskun, Hasan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: The Ramanujan journal - Springer US, 1997, 26(2011), 2 vom: 30. Apr., Seite 229-250 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2011 ; number:2 ; day:30 ; month:04 ; pages:229-250 |
Links: |
---|
DOI / URN: |
10.1007/s11139-010-9275-9 |
---|
Katalog-ID: |
OLC2059648289 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2059648289 | ||
003 | DE-627 | ||
005 | 20230504021056.0 | ||
007 | tu | ||
008 | 200820s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11139-010-9275-9 |2 doi | |
035 | |a (DE-627)OLC2059648289 | ||
035 | |a (DE-He213)s11139-010-9275-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 7,24 |2 ssgn | ||
100 | 1 | |a Coskun, Hasan |e verfasserin |4 aut | |
245 | 1 | 0 | |a A multilateral Bailey lemma and multiple Andrews–Gordon identities |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2011 | ||
520 | |a Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form are written in terms of determinants of theta functions. | ||
650 | 4 | |a Multilateral Bailey lemma | |
650 | 4 | |a Multiple Andrews–Gordon identities | |
650 | 4 | |a Determinant evaluations | |
650 | 4 | |a Theta functions | |
773 | 0 | 8 | |i Enthalten in |t The Ramanujan journal |d Springer US, 1997 |g 26(2011), 2 vom: 30. Apr., Seite 229-250 |w (DE-627)234141301 |w (DE-600)1394097-1 |w (DE-576)100004989 |x 1382-4090 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2011 |g number:2 |g day:30 |g month:04 |g pages:229-250 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11139-010-9275-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ANG | ||
912 | |a GBV_ILN_40 | ||
951 | |a AR | ||
952 | |d 26 |j 2011 |e 2 |b 30 |c 04 |h 229-250 |
author_variant |
h c hc |
---|---|
matchkey_str |
article:13824090:2011----::mliaeabielmanmlilades |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s11139-010-9275-9 doi (DE-627)OLC2059648289 (DE-He213)s11139-010-9275-9-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Coskun, Hasan verfasserin aut A multilateral Bailey lemma and multiple Andrews–Gordon identities 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form are written in terms of determinants of theta functions. Multilateral Bailey lemma Multiple Andrews–Gordon identities Determinant evaluations Theta functions Enthalten in The Ramanujan journal Springer US, 1997 26(2011), 2 vom: 30. Apr., Seite 229-250 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:26 year:2011 number:2 day:30 month:04 pages:229-250 https://doi.org/10.1007/s11139-010-9275-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG GBV_ILN_40 AR 26 2011 2 30 04 229-250 |
spelling |
10.1007/s11139-010-9275-9 doi (DE-627)OLC2059648289 (DE-He213)s11139-010-9275-9-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Coskun, Hasan verfasserin aut A multilateral Bailey lemma and multiple Andrews–Gordon identities 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form are written in terms of determinants of theta functions. Multilateral Bailey lemma Multiple Andrews–Gordon identities Determinant evaluations Theta functions Enthalten in The Ramanujan journal Springer US, 1997 26(2011), 2 vom: 30. Apr., Seite 229-250 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:26 year:2011 number:2 day:30 month:04 pages:229-250 https://doi.org/10.1007/s11139-010-9275-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG GBV_ILN_40 AR 26 2011 2 30 04 229-250 |
allfields_unstemmed |
10.1007/s11139-010-9275-9 doi (DE-627)OLC2059648289 (DE-He213)s11139-010-9275-9-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Coskun, Hasan verfasserin aut A multilateral Bailey lemma and multiple Andrews–Gordon identities 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form are written in terms of determinants of theta functions. Multilateral Bailey lemma Multiple Andrews–Gordon identities Determinant evaluations Theta functions Enthalten in The Ramanujan journal Springer US, 1997 26(2011), 2 vom: 30. Apr., Seite 229-250 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:26 year:2011 number:2 day:30 month:04 pages:229-250 https://doi.org/10.1007/s11139-010-9275-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG GBV_ILN_40 AR 26 2011 2 30 04 229-250 |
allfieldsGer |
10.1007/s11139-010-9275-9 doi (DE-627)OLC2059648289 (DE-He213)s11139-010-9275-9-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Coskun, Hasan verfasserin aut A multilateral Bailey lemma and multiple Andrews–Gordon identities 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form are written in terms of determinants of theta functions. Multilateral Bailey lemma Multiple Andrews–Gordon identities Determinant evaluations Theta functions Enthalten in The Ramanujan journal Springer US, 1997 26(2011), 2 vom: 30. Apr., Seite 229-250 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:26 year:2011 number:2 day:30 month:04 pages:229-250 https://doi.org/10.1007/s11139-010-9275-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG GBV_ILN_40 AR 26 2011 2 30 04 229-250 |
allfieldsSound |
10.1007/s11139-010-9275-9 doi (DE-627)OLC2059648289 (DE-He213)s11139-010-9275-9-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Coskun, Hasan verfasserin aut A multilateral Bailey lemma and multiple Andrews–Gordon identities 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form are written in terms of determinants of theta functions. Multilateral Bailey lemma Multiple Andrews–Gordon identities Determinant evaluations Theta functions Enthalten in The Ramanujan journal Springer US, 1997 26(2011), 2 vom: 30. Apr., Seite 229-250 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:26 year:2011 number:2 day:30 month:04 pages:229-250 https://doi.org/10.1007/s11139-010-9275-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG GBV_ILN_40 AR 26 2011 2 30 04 229-250 |
language |
English |
source |
Enthalten in The Ramanujan journal 26(2011), 2 vom: 30. Apr., Seite 229-250 volume:26 year:2011 number:2 day:30 month:04 pages:229-250 |
sourceStr |
Enthalten in The Ramanujan journal 26(2011), 2 vom: 30. Apr., Seite 229-250 volume:26 year:2011 number:2 day:30 month:04 pages:229-250 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multilateral Bailey lemma Multiple Andrews–Gordon identities Determinant evaluations Theta functions |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
The Ramanujan journal |
authorswithroles_txt_mv |
Coskun, Hasan @@aut@@ |
publishDateDaySort_date |
2011-04-30T00:00:00Z |
hierarchy_top_id |
234141301 |
dewey-sort |
3510 |
id |
OLC2059648289 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059648289</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504021056.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11139-010-9275-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059648289</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11139-010-9275-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coskun, Hasan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A multilateral Bailey lemma and multiple Andrews–Gordon identities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form are written in terms of determinants of theta functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multilateral Bailey lemma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple Andrews–Gordon identities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Determinant evaluations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theta functions</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Ramanujan journal</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">26(2011), 2 vom: 30. Apr., Seite 229-250</subfield><subfield code="w">(DE-627)234141301</subfield><subfield code="w">(DE-600)1394097-1</subfield><subfield code="w">(DE-576)100004989</subfield><subfield code="x">1382-4090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:30</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:229-250</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11139-010-9275-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">30</subfield><subfield code="c">04</subfield><subfield code="h">229-250</subfield></datafield></record></collection>
|
author |
Coskun, Hasan |
spellingShingle |
Coskun, Hasan ddc 510 ssgn 7,24 misc Multilateral Bailey lemma misc Multiple Andrews–Gordon identities misc Determinant evaluations misc Theta functions A multilateral Bailey lemma and multiple Andrews–Gordon identities |
authorStr |
Coskun, Hasan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)234141301 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1382-4090 |
topic_title |
510 VZ 7,24 ssgn A multilateral Bailey lemma and multiple Andrews–Gordon identities Multilateral Bailey lemma Multiple Andrews–Gordon identities Determinant evaluations Theta functions |
topic |
ddc 510 ssgn 7,24 misc Multilateral Bailey lemma misc Multiple Andrews–Gordon identities misc Determinant evaluations misc Theta functions |
topic_unstemmed |
ddc 510 ssgn 7,24 misc Multilateral Bailey lemma misc Multiple Andrews–Gordon identities misc Determinant evaluations misc Theta functions |
topic_browse |
ddc 510 ssgn 7,24 misc Multilateral Bailey lemma misc Multiple Andrews–Gordon identities misc Determinant evaluations misc Theta functions |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The Ramanujan journal |
hierarchy_parent_id |
234141301 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
The Ramanujan journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 |
title |
A multilateral Bailey lemma and multiple Andrews–Gordon identities |
ctrlnum |
(DE-627)OLC2059648289 (DE-He213)s11139-010-9275-9-p |
title_full |
A multilateral Bailey lemma and multiple Andrews–Gordon identities |
author_sort |
Coskun, Hasan |
journal |
The Ramanujan journal |
journalStr |
The Ramanujan journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
229 |
author_browse |
Coskun, Hasan |
container_volume |
26 |
class |
510 VZ 7,24 ssgn |
format_se |
Aufsätze |
author-letter |
Coskun, Hasan |
doi_str_mv |
10.1007/s11139-010-9275-9 |
dewey-full |
510 |
title_sort |
a multilateral bailey lemma and multiple andrews–gordon identities |
title_auth |
A multilateral Bailey lemma and multiple Andrews–Gordon identities |
abstract |
Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form are written in terms of determinants of theta functions. © Springer Science+Business Media, LLC 2011 |
abstractGer |
Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form are written in terms of determinants of theta functions. © Springer Science+Business Media, LLC 2011 |
abstract_unstemmed |
Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form are written in terms of determinants of theta functions. © Springer Science+Business Media, LLC 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG GBV_ILN_40 |
container_issue |
2 |
title_short |
A multilateral Bailey lemma and multiple Andrews–Gordon identities |
url |
https://doi.org/10.1007/s11139-010-9275-9 |
remote_bool |
false |
ppnlink |
234141301 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11139-010-9275-9 |
up_date |
2024-07-03T22:55:08.368Z |
_version_ |
1803600326420332544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059648289</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504021056.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11139-010-9275-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059648289</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11139-010-9275-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coskun, Hasan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A multilateral Bailey lemma and multiple Andrews–Gordon identities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A multilateral Bailey lemma is proved, and multiple analogues of the Rogers–Ramanujan identities and Euler’s pentagonal theorem are constructed as applications. The extreme cases of the Andrews–Gordon identities are also generalized using the multilateral Bailey lemma where their final form are written in terms of determinants of theta functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multilateral Bailey lemma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple Andrews–Gordon identities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Determinant evaluations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theta functions</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Ramanujan journal</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">26(2011), 2 vom: 30. Apr., Seite 229-250</subfield><subfield code="w">(DE-627)234141301</subfield><subfield code="w">(DE-600)1394097-1</subfield><subfield code="w">(DE-576)100004989</subfield><subfield code="x">1382-4090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:30</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:229-250</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11139-010-9275-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">30</subfield><subfield code="c">04</subfield><subfield code="h">229-250</subfield></datafield></record></collection>
|
score |
7.402011 |