Self-diffusion in substitutional solid solutions with Fcc lattice
Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by th...
Ausführliche Beschreibung
Autor*in: |
Kučera, J. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1970 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970 |
---|
Übergeordnetes Werk: |
Enthalten in: Metallurgical and materials transactions / B - Springer-Verlag, 1994, 1(1970), 9 vom: Sept., Seite 2603-2606 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:1970 ; number:9 ; month:09 ; pages:2603-2606 |
Links: |
---|
DOI / URN: |
10.1007/BF03038391 |
---|
Katalog-ID: |
OLC2059712874 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2059712874 | ||
003 | DE-627 | ||
005 | 20230515203626.0 | ||
007 | tu | ||
008 | 200820s1970 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF03038391 |2 doi | |
035 | |a (DE-627)OLC2059712874 | ||
035 | |a (DE-He213)BF03038391-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 660 |q VZ |
100 | 1 | |a Kučera, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Self-diffusion in substitutional solid solutions with Fcc lattice |
264 | 1 | |c 1970 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970 | ||
520 | |a Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by the equations , whereK0,K1 are constants,Tm andTmA are melting points of the alloy or of element A respectively,XB is the atomic percent of element B,DoAA and ΔHAA are diffusion characteristics of the pure element A. For the frequency factor of regular or nearly regular solid solutions with fcc lattice that present a mutual solubility and for which the diffusion data for the whole concentration interval are available, the following relation has been found For the activation enthalpy of these solutions the equation$$\Delta H_{AB}^A = {{T_m } \over {100}}\left[ {{{\Delta H_A^A } \over {T_{mA} }}X_A + {{\Delta H_B^A } \over {T_{mB} }}X_B } \right]$$ is satisfied, whereDoBA and ΔHBA are the characteristics of heterodiffusion of element A in element B andTmB is the melting point of element B. | ||
650 | 4 | |a Metallurgical Transaction | |
650 | 4 | |a Thallium | |
650 | 4 | |a Concentration Dependence | |
650 | 4 | |a Frequency Factor | |
650 | 4 | |a Diffusion Characteristic | |
700 | 1 | |a Million, B. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Metallurgical and materials transactions / B |d Springer-Verlag, 1994 |g 1(1970), 9 vom: Sept., Seite 2603-2606 |w (DE-627)182203832 |w (DE-600)1186125-3 |w (DE-576)038889196 |x 1073-5615 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:1970 |g number:9 |g month:09 |g pages:2603-2606 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF03038391 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
951 | |a AR | ||
952 | |d 1 |j 1970 |e 9 |c 09 |h 2603-2606 |
author_variant |
j k jk b m bm |
---|---|
matchkey_str |
article:10735615:1970----::efifsoisbtttoasldouin |
hierarchy_sort_str |
1970 |
publishDate |
1970 |
allfields |
10.1007/BF03038391 doi (DE-627)OLC2059712874 (DE-He213)BF03038391-p DE-627 ger DE-627 rakwb eng 620 660 VZ Kučera, J. verfasserin aut Self-diffusion in substitutional solid solutions with Fcc lattice 1970 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970 Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by the equations , whereK0,K1 are constants,Tm andTmA are melting points of the alloy or of element A respectively,XB is the atomic percent of element B,DoAA and ΔHAA are diffusion characteristics of the pure element A. For the frequency factor of regular or nearly regular solid solutions with fcc lattice that present a mutual solubility and for which the diffusion data for the whole concentration interval are available, the following relation has been found For the activation enthalpy of these solutions the equation$$\Delta H_{AB}^A = {{T_m } \over {100}}\left[ {{{\Delta H_A^A } \over {T_{mA} }}X_A + {{\Delta H_B^A } \over {T_{mB} }}X_B } \right]$$ is satisfied, whereDoBA and ΔHBA are the characteristics of heterodiffusion of element A in element B andTmB is the melting point of element B. Metallurgical Transaction Thallium Concentration Dependence Frequency Factor Diffusion Characteristic Million, B. aut Enthalten in Metallurgical and materials transactions / B Springer-Verlag, 1994 1(1970), 9 vom: Sept., Seite 2603-2606 (DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 1073-5615 nnns volume:1 year:1970 number:9 month:09 pages:2603-2606 https://doi.org/10.1007/BF03038391 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 AR 1 1970 9 09 2603-2606 |
spelling |
10.1007/BF03038391 doi (DE-627)OLC2059712874 (DE-He213)BF03038391-p DE-627 ger DE-627 rakwb eng 620 660 VZ Kučera, J. verfasserin aut Self-diffusion in substitutional solid solutions with Fcc lattice 1970 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970 Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by the equations , whereK0,K1 are constants,Tm andTmA are melting points of the alloy or of element A respectively,XB is the atomic percent of element B,DoAA and ΔHAA are diffusion characteristics of the pure element A. For the frequency factor of regular or nearly regular solid solutions with fcc lattice that present a mutual solubility and for which the diffusion data for the whole concentration interval are available, the following relation has been found For the activation enthalpy of these solutions the equation$$\Delta H_{AB}^A = {{T_m } \over {100}}\left[ {{{\Delta H_A^A } \over {T_{mA} }}X_A + {{\Delta H_B^A } \over {T_{mB} }}X_B } \right]$$ is satisfied, whereDoBA and ΔHBA are the characteristics of heterodiffusion of element A in element B andTmB is the melting point of element B. Metallurgical Transaction Thallium Concentration Dependence Frequency Factor Diffusion Characteristic Million, B. aut Enthalten in Metallurgical and materials transactions / B Springer-Verlag, 1994 1(1970), 9 vom: Sept., Seite 2603-2606 (DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 1073-5615 nnns volume:1 year:1970 number:9 month:09 pages:2603-2606 https://doi.org/10.1007/BF03038391 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 AR 1 1970 9 09 2603-2606 |
allfields_unstemmed |
10.1007/BF03038391 doi (DE-627)OLC2059712874 (DE-He213)BF03038391-p DE-627 ger DE-627 rakwb eng 620 660 VZ Kučera, J. verfasserin aut Self-diffusion in substitutional solid solutions with Fcc lattice 1970 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970 Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by the equations , whereK0,K1 are constants,Tm andTmA are melting points of the alloy or of element A respectively,XB is the atomic percent of element B,DoAA and ΔHAA are diffusion characteristics of the pure element A. For the frequency factor of regular or nearly regular solid solutions with fcc lattice that present a mutual solubility and for which the diffusion data for the whole concentration interval are available, the following relation has been found For the activation enthalpy of these solutions the equation$$\Delta H_{AB}^A = {{T_m } \over {100}}\left[ {{{\Delta H_A^A } \over {T_{mA} }}X_A + {{\Delta H_B^A } \over {T_{mB} }}X_B } \right]$$ is satisfied, whereDoBA and ΔHBA are the characteristics of heterodiffusion of element A in element B andTmB is the melting point of element B. Metallurgical Transaction Thallium Concentration Dependence Frequency Factor Diffusion Characteristic Million, B. aut Enthalten in Metallurgical and materials transactions / B Springer-Verlag, 1994 1(1970), 9 vom: Sept., Seite 2603-2606 (DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 1073-5615 nnns volume:1 year:1970 number:9 month:09 pages:2603-2606 https://doi.org/10.1007/BF03038391 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 AR 1 1970 9 09 2603-2606 |
allfieldsGer |
10.1007/BF03038391 doi (DE-627)OLC2059712874 (DE-He213)BF03038391-p DE-627 ger DE-627 rakwb eng 620 660 VZ Kučera, J. verfasserin aut Self-diffusion in substitutional solid solutions with Fcc lattice 1970 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970 Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by the equations , whereK0,K1 are constants,Tm andTmA are melting points of the alloy or of element A respectively,XB is the atomic percent of element B,DoAA and ΔHAA are diffusion characteristics of the pure element A. For the frequency factor of regular or nearly regular solid solutions with fcc lattice that present a mutual solubility and for which the diffusion data for the whole concentration interval are available, the following relation has been found For the activation enthalpy of these solutions the equation$$\Delta H_{AB}^A = {{T_m } \over {100}}\left[ {{{\Delta H_A^A } \over {T_{mA} }}X_A + {{\Delta H_B^A } \over {T_{mB} }}X_B } \right]$$ is satisfied, whereDoBA and ΔHBA are the characteristics of heterodiffusion of element A in element B andTmB is the melting point of element B. Metallurgical Transaction Thallium Concentration Dependence Frequency Factor Diffusion Characteristic Million, B. aut Enthalten in Metallurgical and materials transactions / B Springer-Verlag, 1994 1(1970), 9 vom: Sept., Seite 2603-2606 (DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 1073-5615 nnns volume:1 year:1970 number:9 month:09 pages:2603-2606 https://doi.org/10.1007/BF03038391 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 AR 1 1970 9 09 2603-2606 |
allfieldsSound |
10.1007/BF03038391 doi (DE-627)OLC2059712874 (DE-He213)BF03038391-p DE-627 ger DE-627 rakwb eng 620 660 VZ Kučera, J. verfasserin aut Self-diffusion in substitutional solid solutions with Fcc lattice 1970 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970 Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by the equations , whereK0,K1 are constants,Tm andTmA are melting points of the alloy or of element A respectively,XB is the atomic percent of element B,DoAA and ΔHAA are diffusion characteristics of the pure element A. For the frequency factor of regular or nearly regular solid solutions with fcc lattice that present a mutual solubility and for which the diffusion data for the whole concentration interval are available, the following relation has been found For the activation enthalpy of these solutions the equation$$\Delta H_{AB}^A = {{T_m } \over {100}}\left[ {{{\Delta H_A^A } \over {T_{mA} }}X_A + {{\Delta H_B^A } \over {T_{mB} }}X_B } \right]$$ is satisfied, whereDoBA and ΔHBA are the characteristics of heterodiffusion of element A in element B andTmB is the melting point of element B. Metallurgical Transaction Thallium Concentration Dependence Frequency Factor Diffusion Characteristic Million, B. aut Enthalten in Metallurgical and materials transactions / B Springer-Verlag, 1994 1(1970), 9 vom: Sept., Seite 2603-2606 (DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 1073-5615 nnns volume:1 year:1970 number:9 month:09 pages:2603-2606 https://doi.org/10.1007/BF03038391 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 AR 1 1970 9 09 2603-2606 |
language |
English |
source |
Enthalten in Metallurgical and materials transactions / B 1(1970), 9 vom: Sept., Seite 2603-2606 volume:1 year:1970 number:9 month:09 pages:2603-2606 |
sourceStr |
Enthalten in Metallurgical and materials transactions / B 1(1970), 9 vom: Sept., Seite 2603-2606 volume:1 year:1970 number:9 month:09 pages:2603-2606 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Metallurgical Transaction Thallium Concentration Dependence Frequency Factor Diffusion Characteristic |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Metallurgical and materials transactions / B |
authorswithroles_txt_mv |
Kučera, J. @@aut@@ Million, B. @@aut@@ |
publishDateDaySort_date |
1970-09-01T00:00:00Z |
hierarchy_top_id |
182203832 |
dewey-sort |
3620 |
id |
OLC2059712874 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059712874</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230515203626.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1970 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03038391</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059712874</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF03038391-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kučera, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-diffusion in substitutional solid solutions with Fcc lattice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1970</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by the equations , whereK0,K1 are constants,Tm andTmA are melting points of the alloy or of element A respectively,XB is the atomic percent of element B,DoAA and ΔHAA are diffusion characteristics of the pure element A. For the frequency factor of regular or nearly regular solid solutions with fcc lattice that present a mutual solubility and for which the diffusion data for the whole concentration interval are available, the following relation has been found For the activation enthalpy of these solutions the equation$$\Delta H_{AB}^A = {{T_m } \over {100}}\left[ {{{\Delta H_A^A } \over {T_{mA} }}X_A + {{\Delta H_B^A } \over {T_{mB} }}X_B } \right]$$ is satisfied, whereDoBA and ΔHBA are the characteristics of heterodiffusion of element A in element B andTmB is the melting point of element B.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallurgical Transaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thallium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concentration Dependence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion Characteristic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Million, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical and materials transactions / B</subfield><subfield code="d">Springer-Verlag, 1994</subfield><subfield code="g">1(1970), 9 vom: Sept., Seite 2603-2606</subfield><subfield code="w">(DE-627)182203832</subfield><subfield code="w">(DE-600)1186125-3</subfield><subfield code="w">(DE-576)038889196</subfield><subfield code="x">1073-5615</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:1970</subfield><subfield code="g">number:9</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2603-2606</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF03038391</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">1970</subfield><subfield code="e">9</subfield><subfield code="c">09</subfield><subfield code="h">2603-2606</subfield></datafield></record></collection>
|
author |
Kučera, J. |
spellingShingle |
Kučera, J. ddc 620 misc Metallurgical Transaction misc Thallium misc Concentration Dependence misc Frequency Factor misc Diffusion Characteristic Self-diffusion in substitutional solid solutions with Fcc lattice |
authorStr |
Kučera, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182203832 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1073-5615 |
topic_title |
620 660 VZ Self-diffusion in substitutional solid solutions with Fcc lattice Metallurgical Transaction Thallium Concentration Dependence Frequency Factor Diffusion Characteristic |
topic |
ddc 620 misc Metallurgical Transaction misc Thallium misc Concentration Dependence misc Frequency Factor misc Diffusion Characteristic |
topic_unstemmed |
ddc 620 misc Metallurgical Transaction misc Thallium misc Concentration Dependence misc Frequency Factor misc Diffusion Characteristic |
topic_browse |
ddc 620 misc Metallurgical Transaction misc Thallium misc Concentration Dependence misc Frequency Factor misc Diffusion Characteristic |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Metallurgical and materials transactions / B |
hierarchy_parent_id |
182203832 |
dewey-tens |
620 - Engineering 660 - Chemical engineering |
hierarchy_top_title |
Metallurgical and materials transactions / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 |
title |
Self-diffusion in substitutional solid solutions with Fcc lattice |
ctrlnum |
(DE-627)OLC2059712874 (DE-He213)BF03038391-p |
title_full |
Self-diffusion in substitutional solid solutions with Fcc lattice |
author_sort |
Kučera, J. |
journal |
Metallurgical and materials transactions / B |
journalStr |
Metallurgical and materials transactions / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1970 |
contenttype_str_mv |
txt |
container_start_page |
2603 |
author_browse |
Kučera, J. Million, B. |
container_volume |
1 |
class |
620 660 VZ |
format_se |
Aufsätze |
author-letter |
Kučera, J. |
doi_str_mv |
10.1007/BF03038391 |
dewey-full |
620 660 |
title_sort |
self-diffusion in substitutional solid solutions with fcc lattice |
title_auth |
Self-diffusion in substitutional solid solutions with Fcc lattice |
abstract |
Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by the equations , whereK0,K1 are constants,Tm andTmA are melting points of the alloy or of element A respectively,XB is the atomic percent of element B,DoAA and ΔHAA are diffusion characteristics of the pure element A. For the frequency factor of regular or nearly regular solid solutions with fcc lattice that present a mutual solubility and for which the diffusion data for the whole concentration interval are available, the following relation has been found For the activation enthalpy of these solutions the equation$$\Delta H_{AB}^A = {{T_m } \over {100}}\left[ {{{\Delta H_A^A } \over {T_{mA} }}X_A + {{\Delta H_B^A } \over {T_{mB} }}X_B } \right]$$ is satisfied, whereDoBA and ΔHBA are the characteristics of heterodiffusion of element A in element B andTmB is the melting point of element B. © The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970 |
abstractGer |
Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by the equations , whereK0,K1 are constants,Tm andTmA are melting points of the alloy or of element A respectively,XB is the atomic percent of element B,DoAA and ΔHAA are diffusion characteristics of the pure element A. For the frequency factor of regular or nearly regular solid solutions with fcc lattice that present a mutual solubility and for which the diffusion data for the whole concentration interval are available, the following relation has been found For the activation enthalpy of these solutions the equation$$\Delta H_{AB}^A = {{T_m } \over {100}}\left[ {{{\Delta H_A^A } \over {T_{mA} }}X_A + {{\Delta H_B^A } \over {T_{mB} }}X_B } \right]$$ is satisfied, whereDoBA and ΔHBA are the characteristics of heterodiffusion of element A in element B andTmB is the melting point of element B. © The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970 |
abstract_unstemmed |
Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by the equations , whereK0,K1 are constants,Tm andTmA are melting points of the alloy or of element A respectively,XB is the atomic percent of element B,DoAA and ΔHAA are diffusion characteristics of the pure element A. For the frequency factor of regular or nearly regular solid solutions with fcc lattice that present a mutual solubility and for which the diffusion data for the whole concentration interval are available, the following relation has been found For the activation enthalpy of these solutions the equation$$\Delta H_{AB}^A = {{T_m } \over {100}}\left[ {{{\Delta H_A^A } \over {T_{mA} }}X_A + {{\Delta H_B^A } \over {T_{mB} }}X_B } \right]$$ is satisfied, whereDoBA and ΔHBA are the characteristics of heterodiffusion of element A in element B andTmB is the melting point of element B. © The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 |
container_issue |
9 |
title_short |
Self-diffusion in substitutional solid solutions with Fcc lattice |
url |
https://doi.org/10.1007/BF03038391 |
remote_bool |
false |
author2 |
Million, B. |
author2Str |
Million, B. |
ppnlink |
182203832 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF03038391 |
up_date |
2024-07-03T23:08:05.587Z |
_version_ |
1803601141396668416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059712874</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230515203626.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1970 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03038391</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059712874</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF03038391-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kučera, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-diffusion in substitutional solid solutions with Fcc lattice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1970</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With the use of the results from the previous $ paper^{1} $ and from the papers of the other authors it has been ascertained that in some solid solutions with fcc lattice the self-diffusion frequency factorDoABA and activation enthalpy ΔHABA of the element A in the alloy A-B are given by the equations , whereK0,K1 are constants,Tm andTmA are melting points of the alloy or of element A respectively,XB is the atomic percent of element B,DoAA and ΔHAA are diffusion characteristics of the pure element A. For the frequency factor of regular or nearly regular solid solutions with fcc lattice that present a mutual solubility and for which the diffusion data for the whole concentration interval are available, the following relation has been found For the activation enthalpy of these solutions the equation$$\Delta H_{AB}^A = {{T_m } \over {100}}\left[ {{{\Delta H_A^A } \over {T_{mA} }}X_A + {{\Delta H_B^A } \over {T_{mB} }}X_B } \right]$$ is satisfied, whereDoBA and ΔHBA are the characteristics of heterodiffusion of element A in element B andTmB is the melting point of element B.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallurgical Transaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thallium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concentration Dependence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion Characteristic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Million, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical and materials transactions / B</subfield><subfield code="d">Springer-Verlag, 1994</subfield><subfield code="g">1(1970), 9 vom: Sept., Seite 2603-2606</subfield><subfield code="w">(DE-627)182203832</subfield><subfield code="w">(DE-600)1186125-3</subfield><subfield code="w">(DE-576)038889196</subfield><subfield code="x">1073-5615</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:1970</subfield><subfield code="g">number:9</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2603-2606</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF03038391</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">1970</subfield><subfield code="e">9</subfield><subfield code="c">09</subfield><subfield code="h">2603-2606</subfield></datafield></record></collection>
|
score |
7.401573 |