Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model
Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part pape...
Ausführliche Beschreibung
Autor*in: |
Thomas, B. G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1987 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987 |
---|
Übergeordnetes Werk: |
Enthalten in: Metallurgical transactions / B - Springer-Verlag, 1975, 18(1987), 1 vom: März, Seite 119-130 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:1987 ; number:1 ; month:03 ; pages:119-130 |
Links: |
---|
DOI / URN: |
10.1007/BF02658437 |
---|
Katalog-ID: |
OLC2059744768 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2059744768 | ||
003 | DE-627 | ||
005 | 20230518124559.0 | ||
007 | tu | ||
008 | 200820s1987 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02658437 |2 doi | |
035 | |a (DE-627)OLC2059744768 | ||
035 | |a (DE-He213)BF02658437-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 660 |q VZ |
100 | 1 | |a Thomas, B. G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model |
264 | 1 | |c 1987 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987 | ||
520 | |a Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part paper the formulation and application of a heat-flow model, necessary for the prediction of the temperature distribution which governs thermal stress generation in the ingot, are described. A transverse plane through the ingot and mold is considered and the model incorporates geometric features such as rounded corners and mold corrugations by the use of the finite-element method. The time of air gap formation between mold and solidifying ingot skin is input, based on reported measurements, as a function of position over the ingot/mold surface. The model has been verified with analytical solutions and by comparison of predictions to industrial measurements. Finally, the model has been applied to calculate temperature contours in a 760×1520 mm, corrugated, low-carbon steel ingot under processing conditions conducive to panel crack formation. The model predictions are input to an uncoupled stress model which is described in Part II. | ||
650 | 4 | |a Mold | |
650 | 4 | |a Metallurgical Transaction | |
650 | 4 | |a Steel Ingot | |
650 | 4 | |a Track Time | |
650 | 4 | |a Ingot Surface | |
700 | 1 | |a Samarasekera, I. V. |4 aut | |
700 | 1 | |a Brimacombe, J. K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Metallurgical transactions / B |d Springer-Verlag, 1975 |g 18(1987), 1 vom: März, Seite 119-130 |w (DE-627)12943163X |w (DE-600)192803-X |w (DE-576)014803984 |x 0360-2141 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:1987 |g number:1 |g month:03 |g pages:119-130 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02658437 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4155 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 18 |j 1987 |e 1 |c 03 |h 119-130 |
author_variant |
b g t bg bgt i v s iv ivs j k b jk jkb |
---|---|
matchkey_str |
article:03602141:1987----::ahmtcloeotehrapoesnoselno |
hierarchy_sort_str |
1987 |
publishDate |
1987 |
allfields |
10.1007/BF02658437 doi (DE-627)OLC2059744768 (DE-He213)BF02658437-p DE-627 ger DE-627 rakwb eng 620 660 VZ Thomas, B. G. verfasserin aut Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987 Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part paper the formulation and application of a heat-flow model, necessary for the prediction of the temperature distribution which governs thermal stress generation in the ingot, are described. A transverse plane through the ingot and mold is considered and the model incorporates geometric features such as rounded corners and mold corrugations by the use of the finite-element method. The time of air gap formation between mold and solidifying ingot skin is input, based on reported measurements, as a function of position over the ingot/mold surface. The model has been verified with analytical solutions and by comparison of predictions to industrial measurements. Finally, the model has been applied to calculate temperature contours in a 760×1520 mm, corrugated, low-carbon steel ingot under processing conditions conducive to panel crack formation. The model predictions are input to an uncoupled stress model which is described in Part II. Mold Metallurgical Transaction Steel Ingot Track Time Ingot Surface Samarasekera, I. V. aut Brimacombe, J. K. aut Enthalten in Metallurgical transactions / B Springer-Verlag, 1975 18(1987), 1 vom: März, Seite 119-130 (DE-627)12943163X (DE-600)192803-X (DE-576)014803984 0360-2141 nnns volume:18 year:1987 number:1 month:03 pages:119-130 https://doi.org/10.1007/BF02658437 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 AR 18 1987 1 03 119-130 |
spelling |
10.1007/BF02658437 doi (DE-627)OLC2059744768 (DE-He213)BF02658437-p DE-627 ger DE-627 rakwb eng 620 660 VZ Thomas, B. G. verfasserin aut Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987 Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part paper the formulation and application of a heat-flow model, necessary for the prediction of the temperature distribution which governs thermal stress generation in the ingot, are described. A transverse plane through the ingot and mold is considered and the model incorporates geometric features such as rounded corners and mold corrugations by the use of the finite-element method. The time of air gap formation between mold and solidifying ingot skin is input, based on reported measurements, as a function of position over the ingot/mold surface. The model has been verified with analytical solutions and by comparison of predictions to industrial measurements. Finally, the model has been applied to calculate temperature contours in a 760×1520 mm, corrugated, low-carbon steel ingot under processing conditions conducive to panel crack formation. The model predictions are input to an uncoupled stress model which is described in Part II. Mold Metallurgical Transaction Steel Ingot Track Time Ingot Surface Samarasekera, I. V. aut Brimacombe, J. K. aut Enthalten in Metallurgical transactions / B Springer-Verlag, 1975 18(1987), 1 vom: März, Seite 119-130 (DE-627)12943163X (DE-600)192803-X (DE-576)014803984 0360-2141 nnns volume:18 year:1987 number:1 month:03 pages:119-130 https://doi.org/10.1007/BF02658437 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 AR 18 1987 1 03 119-130 |
allfields_unstemmed |
10.1007/BF02658437 doi (DE-627)OLC2059744768 (DE-He213)BF02658437-p DE-627 ger DE-627 rakwb eng 620 660 VZ Thomas, B. G. verfasserin aut Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987 Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part paper the formulation and application of a heat-flow model, necessary for the prediction of the temperature distribution which governs thermal stress generation in the ingot, are described. A transverse plane through the ingot and mold is considered and the model incorporates geometric features such as rounded corners and mold corrugations by the use of the finite-element method. The time of air gap formation between mold and solidifying ingot skin is input, based on reported measurements, as a function of position over the ingot/mold surface. The model has been verified with analytical solutions and by comparison of predictions to industrial measurements. Finally, the model has been applied to calculate temperature contours in a 760×1520 mm, corrugated, low-carbon steel ingot under processing conditions conducive to panel crack formation. The model predictions are input to an uncoupled stress model which is described in Part II. Mold Metallurgical Transaction Steel Ingot Track Time Ingot Surface Samarasekera, I. V. aut Brimacombe, J. K. aut Enthalten in Metallurgical transactions / B Springer-Verlag, 1975 18(1987), 1 vom: März, Seite 119-130 (DE-627)12943163X (DE-600)192803-X (DE-576)014803984 0360-2141 nnns volume:18 year:1987 number:1 month:03 pages:119-130 https://doi.org/10.1007/BF02658437 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 AR 18 1987 1 03 119-130 |
allfieldsGer |
10.1007/BF02658437 doi (DE-627)OLC2059744768 (DE-He213)BF02658437-p DE-627 ger DE-627 rakwb eng 620 660 VZ Thomas, B. G. verfasserin aut Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987 Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part paper the formulation and application of a heat-flow model, necessary for the prediction of the temperature distribution which governs thermal stress generation in the ingot, are described. A transverse plane through the ingot and mold is considered and the model incorporates geometric features such as rounded corners and mold corrugations by the use of the finite-element method. The time of air gap formation between mold and solidifying ingot skin is input, based on reported measurements, as a function of position over the ingot/mold surface. The model has been verified with analytical solutions and by comparison of predictions to industrial measurements. Finally, the model has been applied to calculate temperature contours in a 760×1520 mm, corrugated, low-carbon steel ingot under processing conditions conducive to panel crack formation. The model predictions are input to an uncoupled stress model which is described in Part II. Mold Metallurgical Transaction Steel Ingot Track Time Ingot Surface Samarasekera, I. V. aut Brimacombe, J. K. aut Enthalten in Metallurgical transactions / B Springer-Verlag, 1975 18(1987), 1 vom: März, Seite 119-130 (DE-627)12943163X (DE-600)192803-X (DE-576)014803984 0360-2141 nnns volume:18 year:1987 number:1 month:03 pages:119-130 https://doi.org/10.1007/BF02658437 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 AR 18 1987 1 03 119-130 |
allfieldsSound |
10.1007/BF02658437 doi (DE-627)OLC2059744768 (DE-He213)BF02658437-p DE-627 ger DE-627 rakwb eng 620 660 VZ Thomas, B. G. verfasserin aut Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987 Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part paper the formulation and application of a heat-flow model, necessary for the prediction of the temperature distribution which governs thermal stress generation in the ingot, are described. A transverse plane through the ingot and mold is considered and the model incorporates geometric features such as rounded corners and mold corrugations by the use of the finite-element method. The time of air gap formation between mold and solidifying ingot skin is input, based on reported measurements, as a function of position over the ingot/mold surface. The model has been verified with analytical solutions and by comparison of predictions to industrial measurements. Finally, the model has been applied to calculate temperature contours in a 760×1520 mm, corrugated, low-carbon steel ingot under processing conditions conducive to panel crack formation. The model predictions are input to an uncoupled stress model which is described in Part II. Mold Metallurgical Transaction Steel Ingot Track Time Ingot Surface Samarasekera, I. V. aut Brimacombe, J. K. aut Enthalten in Metallurgical transactions / B Springer-Verlag, 1975 18(1987), 1 vom: März, Seite 119-130 (DE-627)12943163X (DE-600)192803-X (DE-576)014803984 0360-2141 nnns volume:18 year:1987 number:1 month:03 pages:119-130 https://doi.org/10.1007/BF02658437 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 AR 18 1987 1 03 119-130 |
language |
English |
source |
Enthalten in Metallurgical transactions / B 18(1987), 1 vom: März, Seite 119-130 volume:18 year:1987 number:1 month:03 pages:119-130 |
sourceStr |
Enthalten in Metallurgical transactions / B 18(1987), 1 vom: März, Seite 119-130 volume:18 year:1987 number:1 month:03 pages:119-130 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mold Metallurgical Transaction Steel Ingot Track Time Ingot Surface |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Metallurgical transactions / B |
authorswithroles_txt_mv |
Thomas, B. G. @@aut@@ Samarasekera, I. V. @@aut@@ Brimacombe, J. K. @@aut@@ |
publishDateDaySort_date |
1987-03-01T00:00:00Z |
hierarchy_top_id |
12943163X |
dewey-sort |
3620 |
id |
OLC2059744768 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059744768</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518124559.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1987 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02658437</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059744768</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02658437-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thomas, B. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1987</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part paper the formulation and application of a heat-flow model, necessary for the prediction of the temperature distribution which governs thermal stress generation in the ingot, are described. A transverse plane through the ingot and mold is considered and the model incorporates geometric features such as rounded corners and mold corrugations by the use of the finite-element method. The time of air gap formation between mold and solidifying ingot skin is input, based on reported measurements, as a function of position over the ingot/mold surface. The model has been verified with analytical solutions and by comparison of predictions to industrial measurements. Finally, the model has been applied to calculate temperature contours in a 760×1520 mm, corrugated, low-carbon steel ingot under processing conditions conducive to panel crack formation. The model predictions are input to an uncoupled stress model which is described in Part II.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallurgical Transaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steel Ingot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Track Time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingot Surface</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samarasekera, I. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brimacombe, J. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical transactions / B</subfield><subfield code="d">Springer-Verlag, 1975</subfield><subfield code="g">18(1987), 1 vom: März, Seite 119-130</subfield><subfield code="w">(DE-627)12943163X</subfield><subfield code="w">(DE-600)192803-X</subfield><subfield code="w">(DE-576)014803984</subfield><subfield code="x">0360-2141</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:1987</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:119-130</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02658437</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">1987</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">119-130</subfield></datafield></record></collection>
|
author |
Thomas, B. G. |
spellingShingle |
Thomas, B. G. ddc 620 misc Mold misc Metallurgical Transaction misc Steel Ingot misc Track Time misc Ingot Surface Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model |
authorStr |
Thomas, B. G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12943163X |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0360-2141 |
topic_title |
620 660 VZ Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model Mold Metallurgical Transaction Steel Ingot Track Time Ingot Surface |
topic |
ddc 620 misc Mold misc Metallurgical Transaction misc Steel Ingot misc Track Time misc Ingot Surface |
topic_unstemmed |
ddc 620 misc Mold misc Metallurgical Transaction misc Steel Ingot misc Track Time misc Ingot Surface |
topic_browse |
ddc 620 misc Mold misc Metallurgical Transaction misc Steel Ingot misc Track Time misc Ingot Surface |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Metallurgical transactions / B |
hierarchy_parent_id |
12943163X |
dewey-tens |
620 - Engineering 660 - Chemical engineering |
hierarchy_top_title |
Metallurgical transactions / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12943163X (DE-600)192803-X (DE-576)014803984 |
title |
Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model |
ctrlnum |
(DE-627)OLC2059744768 (DE-He213)BF02658437-p |
title_full |
Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model |
author_sort |
Thomas, B. G. |
journal |
Metallurgical transactions / B |
journalStr |
Metallurgical transactions / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1987 |
contenttype_str_mv |
txt |
container_start_page |
119 |
author_browse |
Thomas, B. G. Samarasekera, I. V. Brimacombe, J. K. |
container_volume |
18 |
class |
620 660 VZ |
format_se |
Aufsätze |
author-letter |
Thomas, B. G. |
doi_str_mv |
10.1007/BF02658437 |
dewey-full |
620 660 |
title_sort |
mathematical model of the thermal processing of steel ingots: part i. heat flow model |
title_auth |
Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model |
abstract |
Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part paper the formulation and application of a heat-flow model, necessary for the prediction of the temperature distribution which governs thermal stress generation in the ingot, are described. A transverse plane through the ingot and mold is considered and the model incorporates geometric features such as rounded corners and mold corrugations by the use of the finite-element method. The time of air gap formation between mold and solidifying ingot skin is input, based on reported measurements, as a function of position over the ingot/mold surface. The model has been verified with analytical solutions and by comparison of predictions to industrial measurements. Finally, the model has been applied to calculate temperature contours in a 760×1520 mm, corrugated, low-carbon steel ingot under processing conditions conducive to panel crack formation. The model predictions are input to an uncoupled stress model which is described in Part II. © The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987 |
abstractGer |
Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part paper the formulation and application of a heat-flow model, necessary for the prediction of the temperature distribution which governs thermal stress generation in the ingot, are described. A transverse plane through the ingot and mold is considered and the model incorporates geometric features such as rounded corners and mold corrugations by the use of the finite-element method. The time of air gap formation between mold and solidifying ingot skin is input, based on reported measurements, as a function of position over the ingot/mold surface. The model has been verified with analytical solutions and by comparison of predictions to industrial measurements. Finally, the model has been applied to calculate temperature contours in a 760×1520 mm, corrugated, low-carbon steel ingot under processing conditions conducive to panel crack formation. The model predictions are input to an uncoupled stress model which is described in Part II. © The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987 |
abstract_unstemmed |
Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part paper the formulation and application of a heat-flow model, necessary for the prediction of the temperature distribution which governs thermal stress generation in the ingot, are described. A transverse plane through the ingot and mold is considered and the model incorporates geometric features such as rounded corners and mold corrugations by the use of the finite-element method. The time of air gap formation between mold and solidifying ingot skin is input, based on reported measurements, as a function of position over the ingot/mold surface. The model has been verified with analytical solutions and by comparison of predictions to industrial measurements. Finally, the model has been applied to calculate temperature contours in a 760×1520 mm, corrugated, low-carbon steel ingot under processing conditions conducive to panel crack formation. The model predictions are input to an uncoupled stress model which is described in Part II. © The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
1 |
title_short |
Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model |
url |
https://doi.org/10.1007/BF02658437 |
remote_bool |
false |
author2 |
Samarasekera, I. V. Brimacombe, J. K. |
author2Str |
Samarasekera, I. V. Brimacombe, J. K. |
ppnlink |
12943163X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02658437 |
up_date |
2024-07-03T23:14:15.806Z |
_version_ |
1803601529596280832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059744768</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518124559.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1987 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02658437</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059744768</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02658437-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thomas, B. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1987</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A two-dimensional mathematical model has been developed to predict stress generation in static-cast steel ingots during thermal processing with the objective of understanding the role of stress generation in the formation of defects such as panel cracks. In the first part of a two-part paper the formulation and application of a heat-flow model, necessary for the prediction of the temperature distribution which governs thermal stress generation in the ingot, are described. A transverse plane through the ingot and mold is considered and the model incorporates geometric features such as rounded corners and mold corrugations by the use of the finite-element method. The time of air gap formation between mold and solidifying ingot skin is input, based on reported measurements, as a function of position over the ingot/mold surface. The model has been verified with analytical solutions and by comparison of predictions to industrial measurements. Finally, the model has been applied to calculate temperature contours in a 760×1520 mm, corrugated, low-carbon steel ingot under processing conditions conducive to panel crack formation. The model predictions are input to an uncoupled stress model which is described in Part II.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallurgical Transaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steel Ingot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Track Time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingot Surface</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samarasekera, I. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brimacombe, J. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical transactions / B</subfield><subfield code="d">Springer-Verlag, 1975</subfield><subfield code="g">18(1987), 1 vom: März, Seite 119-130</subfield><subfield code="w">(DE-627)12943163X</subfield><subfield code="w">(DE-600)192803-X</subfield><subfield code="w">(DE-576)014803984</subfield><subfield code="x">0360-2141</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:1987</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:119-130</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02658437</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">1987</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">119-130</subfield></datafield></record></collection>
|
score |
7.4012384 |