Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots
Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingo...
Ausführliche Beschreibung
Autor*in: |
EL-Bealy, Mostafa Omar [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Metallurgical and materials transactions / B - Springer US, 1994, 43(2011), 3 vom: 21. Dez., Seite 635-656 |
---|---|
Übergeordnetes Werk: |
volume:43 ; year:2011 ; number:3 ; day:21 ; month:12 ; pages:635-656 |
Links: |
---|
DOI / URN: |
10.1007/s11663-011-9616-0 |
---|
Katalog-ID: |
OLC2059772931 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2059772931 | ||
003 | DE-627 | ||
005 | 20230509121823.0 | ||
007 | tu | ||
008 | 200820s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11663-011-9616-0 |2 doi | |
035 | |a (DE-627)OLC2059772931 | ||
035 | |a (DE-He213)s11663-011-9616-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 660 |q VZ |
100 | 1 | |a EL-Bealy, Mostafa Omar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011 | ||
520 | |a Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed. | ||
650 | 4 | |a Mushy Zone | |
650 | 4 | |a Casting Speed | |
650 | 4 | |a Ingot Surface | |
650 | 4 | |a Dendritic Solidification | |
650 | 4 | |a Equiaxed Crystal | |
773 | 0 | 8 | |i Enthalten in |t Metallurgical and materials transactions / B |d Springer US, 1994 |g 43(2011), 3 vom: 21. Dez., Seite 635-656 |w (DE-627)182203832 |w (DE-600)1186125-3 |w (DE-576)038889196 |x 1073-5615 |7 nnns |
773 | 1 | 8 | |g volume:43 |g year:2011 |g number:3 |g day:21 |g month:12 |g pages:635-656 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11663-011-9616-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 43 |j 2011 |e 3 |b 21 |c 12 |h 635-656 |
author_variant |
m o e b moe moeb |
---|---|
matchkey_str |
article:10735615:2011----::nednrtctannmcoergtoculdhnmnfrnednrtcrcfrai |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s11663-011-9616-0 doi (DE-627)OLC2059772931 (DE-He213)s11663-011-9616-0-p DE-627 ger DE-627 rakwb eng 620 660 VZ EL-Bealy, Mostafa Omar verfasserin aut Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011 Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed. Mushy Zone Casting Speed Ingot Surface Dendritic Solidification Equiaxed Crystal Enthalten in Metallurgical and materials transactions / B Springer US, 1994 43(2011), 3 vom: 21. Dez., Seite 635-656 (DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 1073-5615 nnns volume:43 year:2011 number:3 day:21 month:12 pages:635-656 https://doi.org/10.1007/s11663-011-9616-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4319 GBV_ILN_4323 AR 43 2011 3 21 12 635-656 |
spelling |
10.1007/s11663-011-9616-0 doi (DE-627)OLC2059772931 (DE-He213)s11663-011-9616-0-p DE-627 ger DE-627 rakwb eng 620 660 VZ EL-Bealy, Mostafa Omar verfasserin aut Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011 Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed. Mushy Zone Casting Speed Ingot Surface Dendritic Solidification Equiaxed Crystal Enthalten in Metallurgical and materials transactions / B Springer US, 1994 43(2011), 3 vom: 21. Dez., Seite 635-656 (DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 1073-5615 nnns volume:43 year:2011 number:3 day:21 month:12 pages:635-656 https://doi.org/10.1007/s11663-011-9616-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4319 GBV_ILN_4323 AR 43 2011 3 21 12 635-656 |
allfields_unstemmed |
10.1007/s11663-011-9616-0 doi (DE-627)OLC2059772931 (DE-He213)s11663-011-9616-0-p DE-627 ger DE-627 rakwb eng 620 660 VZ EL-Bealy, Mostafa Omar verfasserin aut Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011 Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed. Mushy Zone Casting Speed Ingot Surface Dendritic Solidification Equiaxed Crystal Enthalten in Metallurgical and materials transactions / B Springer US, 1994 43(2011), 3 vom: 21. Dez., Seite 635-656 (DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 1073-5615 nnns volume:43 year:2011 number:3 day:21 month:12 pages:635-656 https://doi.org/10.1007/s11663-011-9616-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4319 GBV_ILN_4323 AR 43 2011 3 21 12 635-656 |
allfieldsGer |
10.1007/s11663-011-9616-0 doi (DE-627)OLC2059772931 (DE-He213)s11663-011-9616-0-p DE-627 ger DE-627 rakwb eng 620 660 VZ EL-Bealy, Mostafa Omar verfasserin aut Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011 Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed. Mushy Zone Casting Speed Ingot Surface Dendritic Solidification Equiaxed Crystal Enthalten in Metallurgical and materials transactions / B Springer US, 1994 43(2011), 3 vom: 21. Dez., Seite 635-656 (DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 1073-5615 nnns volume:43 year:2011 number:3 day:21 month:12 pages:635-656 https://doi.org/10.1007/s11663-011-9616-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4319 GBV_ILN_4323 AR 43 2011 3 21 12 635-656 |
allfieldsSound |
10.1007/s11663-011-9616-0 doi (DE-627)OLC2059772931 (DE-He213)s11663-011-9616-0-p DE-627 ger DE-627 rakwb eng 620 660 VZ EL-Bealy, Mostafa Omar verfasserin aut Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011 Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed. Mushy Zone Casting Speed Ingot Surface Dendritic Solidification Equiaxed Crystal Enthalten in Metallurgical and materials transactions / B Springer US, 1994 43(2011), 3 vom: 21. Dez., Seite 635-656 (DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 1073-5615 nnns volume:43 year:2011 number:3 day:21 month:12 pages:635-656 https://doi.org/10.1007/s11663-011-9616-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4319 GBV_ILN_4323 AR 43 2011 3 21 12 635-656 |
language |
English |
source |
Enthalten in Metallurgical and materials transactions / B 43(2011), 3 vom: 21. Dez., Seite 635-656 volume:43 year:2011 number:3 day:21 month:12 pages:635-656 |
sourceStr |
Enthalten in Metallurgical and materials transactions / B 43(2011), 3 vom: 21. Dez., Seite 635-656 volume:43 year:2011 number:3 day:21 month:12 pages:635-656 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mushy Zone Casting Speed Ingot Surface Dendritic Solidification Equiaxed Crystal |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Metallurgical and materials transactions / B |
authorswithroles_txt_mv |
EL-Bealy, Mostafa Omar @@aut@@ |
publishDateDaySort_date |
2011-12-21T00:00:00Z |
hierarchy_top_id |
182203832 |
dewey-sort |
3620 |
id |
OLC2059772931 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059772931</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509121823.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11663-011-9616-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059772931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11663-011-9616-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">EL-Bealy, Mostafa Omar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mushy Zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Casting Speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingot Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dendritic Solidification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equiaxed Crystal</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical and materials transactions / B</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">43(2011), 3 vom: 21. Dez., Seite 635-656</subfield><subfield code="w">(DE-627)182203832</subfield><subfield code="w">(DE-600)1186125-3</subfield><subfield code="w">(DE-576)038889196</subfield><subfield code="x">1073-5615</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:3</subfield><subfield code="g">day:21</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:635-656</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11663-011-9616-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2011</subfield><subfield code="e">3</subfield><subfield code="b">21</subfield><subfield code="c">12</subfield><subfield code="h">635-656</subfield></datafield></record></collection>
|
author |
EL-Bealy, Mostafa Omar |
spellingShingle |
EL-Bealy, Mostafa Omar ddc 620 misc Mushy Zone misc Casting Speed misc Ingot Surface misc Dendritic Solidification misc Equiaxed Crystal Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots |
authorStr |
EL-Bealy, Mostafa Omar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182203832 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1073-5615 |
topic_title |
620 660 VZ Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots Mushy Zone Casting Speed Ingot Surface Dendritic Solidification Equiaxed Crystal |
topic |
ddc 620 misc Mushy Zone misc Casting Speed misc Ingot Surface misc Dendritic Solidification misc Equiaxed Crystal |
topic_unstemmed |
ddc 620 misc Mushy Zone misc Casting Speed misc Ingot Surface misc Dendritic Solidification misc Equiaxed Crystal |
topic_browse |
ddc 620 misc Mushy Zone misc Casting Speed misc Ingot Surface misc Dendritic Solidification misc Equiaxed Crystal |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Metallurgical and materials transactions / B |
hierarchy_parent_id |
182203832 |
dewey-tens |
620 - Engineering 660 - Chemical engineering |
hierarchy_top_title |
Metallurgical and materials transactions / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182203832 (DE-600)1186125-3 (DE-576)038889196 |
title |
Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots |
ctrlnum |
(DE-627)OLC2059772931 (DE-He213)s11663-011-9616-0-p |
title_full |
Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots |
author_sort |
EL-Bealy, Mostafa Omar |
journal |
Metallurgical and materials transactions / B |
journalStr |
Metallurgical and materials transactions / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
635 |
author_browse |
EL-Bealy, Mostafa Omar |
container_volume |
43 |
class |
620 660 VZ |
format_se |
Aufsätze |
author-letter |
EL-Bealy, Mostafa Omar |
doi_str_mv |
10.1007/s11663-011-9616-0 |
dewey-full |
620 660 |
title_sort |
interdendritic strain and macrosegregation-coupled phenomena for interdendritic crack formation in direct-chill cast sheet ingots |
title_auth |
Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots |
abstract |
Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed. © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011 |
abstractGer |
Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed. © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011 |
abstract_unstemmed |
Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed. © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
3 |
title_short |
Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots |
url |
https://doi.org/10.1007/s11663-011-9616-0 |
remote_bool |
false |
ppnlink |
182203832 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11663-011-9616-0 |
up_date |
2024-07-03T23:20:26.371Z |
_version_ |
1803601918163943424 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2059772931</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509121823.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11663-011-9616-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2059772931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11663-011-9616-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">EL-Bealy, Mostafa Omar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mushy Zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Casting Speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingot Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dendritic Solidification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equiaxed Crystal</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical and materials transactions / B</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">43(2011), 3 vom: 21. Dez., Seite 635-656</subfield><subfield code="w">(DE-627)182203832</subfield><subfield code="w">(DE-600)1186125-3</subfield><subfield code="w">(DE-576)038889196</subfield><subfield code="x">1073-5615</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:3</subfield><subfield code="g">day:21</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:635-656</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11663-011-9616-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2011</subfield><subfield code="e">3</subfield><subfield code="b">21</subfield><subfield code="c">12</subfield><subfield code="h">635-656</subfield></datafield></record></collection>
|
score |
7.4003897 |