Phase Coarsening in Thin Films
Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a v...
Ausführliche Beschreibung
Autor*in: |
Wang, K. G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Minerals, Metals & Materials Society 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: JOM - Springer US, 1989, 67(2015), 8 vom: 27. Feb., Seite 1905-1912 |
---|---|
Übergeordnetes Werk: |
volume:67 ; year:2015 ; number:8 ; day:27 ; month:02 ; pages:1905-1912 |
Links: |
---|
DOI / URN: |
10.1007/s11837-015-1338-3 |
---|
Katalog-ID: |
OLC205992653X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205992653X | ||
003 | DE-627 | ||
005 | 20230331221326.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11837-015-1338-3 |2 doi | |
035 | |a (DE-627)OLC205992653X | ||
035 | |a (DE-He213)s11837-015-1338-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 19,1 |2 ssgn | ||
100 | 1 | |a Wang, K. G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phase Coarsening in Thin Films |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Minerals, Metals & Materials Society 2015 | ||
520 | |a Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches. | ||
650 | 4 | |a Particle Size Distribution | |
650 | 4 | |a Area Fraction | |
650 | 4 | |a Critical Radius | |
650 | 4 | |a Screening Length | |
650 | 4 | |a Screen Length | |
700 | 1 | |a Glicksman, M. E. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t JOM |d Springer US, 1989 |g 67(2015), 8 vom: 27. Feb., Seite 1905-1912 |w (DE-627)130823368 |w (DE-600)1015034-1 |w (DE-576)023064358 |x 0148-6608 |7 nnns |
773 | 1 | 8 | |g volume:67 |g year:2015 |g number:8 |g day:27 |g month:02 |g pages:1905-1912 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11837-015-1338-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2027 | ||
951 | |a AR | ||
952 | |d 67 |j 2015 |e 8 |b 27 |c 02 |h 1905-1912 |
author_variant |
k g w kg kgw m e g me meg |
---|---|
matchkey_str |
article:01486608:2015----::hscasnnit |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11837-015-1338-3 doi (DE-627)OLC205992653X (DE-He213)s11837-015-1338-3-p DE-627 ger DE-627 rakwb eng 670 VZ 19,1 ssgn Wang, K. G. verfasserin aut Phase Coarsening in Thin Films 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2015 Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches. Particle Size Distribution Area Fraction Critical Radius Screening Length Screen Length Glicksman, M. E. aut Enthalten in JOM Springer US, 1989 67(2015), 8 vom: 27. Feb., Seite 1905-1912 (DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 0148-6608 nnns volume:67 year:2015 number:8 day:27 month:02 pages:1905-1912 https://doi.org/10.1007/s11837-015-1338-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 AR 67 2015 8 27 02 1905-1912 |
spelling |
10.1007/s11837-015-1338-3 doi (DE-627)OLC205992653X (DE-He213)s11837-015-1338-3-p DE-627 ger DE-627 rakwb eng 670 VZ 19,1 ssgn Wang, K. G. verfasserin aut Phase Coarsening in Thin Films 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2015 Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches. Particle Size Distribution Area Fraction Critical Radius Screening Length Screen Length Glicksman, M. E. aut Enthalten in JOM Springer US, 1989 67(2015), 8 vom: 27. Feb., Seite 1905-1912 (DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 0148-6608 nnns volume:67 year:2015 number:8 day:27 month:02 pages:1905-1912 https://doi.org/10.1007/s11837-015-1338-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 AR 67 2015 8 27 02 1905-1912 |
allfields_unstemmed |
10.1007/s11837-015-1338-3 doi (DE-627)OLC205992653X (DE-He213)s11837-015-1338-3-p DE-627 ger DE-627 rakwb eng 670 VZ 19,1 ssgn Wang, K. G. verfasserin aut Phase Coarsening in Thin Films 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2015 Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches. Particle Size Distribution Area Fraction Critical Radius Screening Length Screen Length Glicksman, M. E. aut Enthalten in JOM Springer US, 1989 67(2015), 8 vom: 27. Feb., Seite 1905-1912 (DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 0148-6608 nnns volume:67 year:2015 number:8 day:27 month:02 pages:1905-1912 https://doi.org/10.1007/s11837-015-1338-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 AR 67 2015 8 27 02 1905-1912 |
allfieldsGer |
10.1007/s11837-015-1338-3 doi (DE-627)OLC205992653X (DE-He213)s11837-015-1338-3-p DE-627 ger DE-627 rakwb eng 670 VZ 19,1 ssgn Wang, K. G. verfasserin aut Phase Coarsening in Thin Films 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2015 Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches. Particle Size Distribution Area Fraction Critical Radius Screening Length Screen Length Glicksman, M. E. aut Enthalten in JOM Springer US, 1989 67(2015), 8 vom: 27. Feb., Seite 1905-1912 (DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 0148-6608 nnns volume:67 year:2015 number:8 day:27 month:02 pages:1905-1912 https://doi.org/10.1007/s11837-015-1338-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 AR 67 2015 8 27 02 1905-1912 |
allfieldsSound |
10.1007/s11837-015-1338-3 doi (DE-627)OLC205992653X (DE-He213)s11837-015-1338-3-p DE-627 ger DE-627 rakwb eng 670 VZ 19,1 ssgn Wang, K. G. verfasserin aut Phase Coarsening in Thin Films 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2015 Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches. Particle Size Distribution Area Fraction Critical Radius Screening Length Screen Length Glicksman, M. E. aut Enthalten in JOM Springer US, 1989 67(2015), 8 vom: 27. Feb., Seite 1905-1912 (DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 0148-6608 nnns volume:67 year:2015 number:8 day:27 month:02 pages:1905-1912 https://doi.org/10.1007/s11837-015-1338-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 AR 67 2015 8 27 02 1905-1912 |
language |
English |
source |
Enthalten in JOM 67(2015), 8 vom: 27. Feb., Seite 1905-1912 volume:67 year:2015 number:8 day:27 month:02 pages:1905-1912 |
sourceStr |
Enthalten in JOM 67(2015), 8 vom: 27. Feb., Seite 1905-1912 volume:67 year:2015 number:8 day:27 month:02 pages:1905-1912 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Particle Size Distribution Area Fraction Critical Radius Screening Length Screen Length |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
JOM |
authorswithroles_txt_mv |
Wang, K. G. @@aut@@ Glicksman, M. E. @@aut@@ |
publishDateDaySort_date |
2015-02-27T00:00:00Z |
hierarchy_top_id |
130823368 |
dewey-sort |
3670 |
id |
OLC205992653X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205992653X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331221326.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11837-015-1338-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205992653X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11837-015-1338-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, K. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase Coarsening in Thin Films</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle Size Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Area Fraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical Radius</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screening Length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screen Length</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glicksman, M. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">JOM</subfield><subfield code="d">Springer US, 1989</subfield><subfield code="g">67(2015), 8 vom: 27. Feb., Seite 1905-1912</subfield><subfield code="w">(DE-627)130823368</subfield><subfield code="w">(DE-600)1015034-1</subfield><subfield code="w">(DE-576)023064358</subfield><subfield code="x">0148-6608</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:8</subfield><subfield code="g">day:27</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1905-1912</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11837-015-1338-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2015</subfield><subfield code="e">8</subfield><subfield code="b">27</subfield><subfield code="c">02</subfield><subfield code="h">1905-1912</subfield></datafield></record></collection>
|
author |
Wang, K. G. |
spellingShingle |
Wang, K. G. ddc 670 ssgn 19,1 misc Particle Size Distribution misc Area Fraction misc Critical Radius misc Screening Length misc Screen Length Phase Coarsening in Thin Films |
authorStr |
Wang, K. G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130823368 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0148-6608 |
topic_title |
670 VZ 19,1 ssgn Phase Coarsening in Thin Films Particle Size Distribution Area Fraction Critical Radius Screening Length Screen Length |
topic |
ddc 670 ssgn 19,1 misc Particle Size Distribution misc Area Fraction misc Critical Radius misc Screening Length misc Screen Length |
topic_unstemmed |
ddc 670 ssgn 19,1 misc Particle Size Distribution misc Area Fraction misc Critical Radius misc Screening Length misc Screen Length |
topic_browse |
ddc 670 ssgn 19,1 misc Particle Size Distribution misc Area Fraction misc Critical Radius misc Screening Length misc Screen Length |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
JOM |
hierarchy_parent_id |
130823368 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
JOM |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 |
title |
Phase Coarsening in Thin Films |
ctrlnum |
(DE-627)OLC205992653X (DE-He213)s11837-015-1338-3-p |
title_full |
Phase Coarsening in Thin Films |
author_sort |
Wang, K. G. |
journal |
JOM |
journalStr |
JOM |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1905 |
author_browse |
Wang, K. G. Glicksman, M. E. |
container_volume |
67 |
class |
670 VZ 19,1 ssgn |
format_se |
Aufsätze |
author-letter |
Wang, K. G. |
doi_str_mv |
10.1007/s11837-015-1338-3 |
dewey-full |
670 |
title_sort |
phase coarsening in thin films |
title_auth |
Phase Coarsening in Thin Films |
abstract |
Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches. © The Minerals, Metals & Materials Society 2015 |
abstractGer |
Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches. © The Minerals, Metals & Materials Society 2015 |
abstract_unstemmed |
Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches. © The Minerals, Metals & Materials Society 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 |
container_issue |
8 |
title_short |
Phase Coarsening in Thin Films |
url |
https://doi.org/10.1007/s11837-015-1338-3 |
remote_bool |
false |
author2 |
Glicksman, M. E. |
author2Str |
Glicksman, M. E. |
ppnlink |
130823368 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11837-015-1338-3 |
up_date |
2024-07-03T23:45:11.235Z |
_version_ |
1803603475154599936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205992653X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331221326.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11837-015-1338-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205992653X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11837-015-1338-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, K. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase Coarsening in Thin Films</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle Size Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Area Fraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical Radius</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screening Length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screen Length</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glicksman, M. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">JOM</subfield><subfield code="d">Springer US, 1989</subfield><subfield code="g">67(2015), 8 vom: 27. Feb., Seite 1905-1912</subfield><subfield code="w">(DE-627)130823368</subfield><subfield code="w">(DE-600)1015034-1</subfield><subfield code="w">(DE-576)023064358</subfield><subfield code="x">0148-6608</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:8</subfield><subfield code="g">day:27</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1905-1912</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11837-015-1338-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2015</subfield><subfield code="e">8</subfield><subfield code="b">27</subfield><subfield code="c">02</subfield><subfield code="h">1905-1912</subfield></datafield></record></collection>
|
score |
7.399107 |