Projective holonomy I: principles and properties
Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and th...
Ausführliche Beschreibung
Autor*in: |
Armstrong, Stuart [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science + Business Media B.V. 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of global analysis and geometry - Springer Netherlands, 1983, 33(2007), 1 vom: 12. Juli, Seite 47-69 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2007 ; number:1 ; day:12 ; month:07 ; pages:47-69 |
Links: |
---|
DOI / URN: |
10.1007/s10455-007-9076-6 |
---|
Katalog-ID: |
OLC2060259401 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060259401 | ||
003 | DE-627 | ||
005 | 20230502194635.0 | ||
007 | tu | ||
008 | 200820s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10455-007-9076-6 |2 doi | |
035 | |a (DE-627)OLC2060259401 | ||
035 | |a (DE-He213)s10455-007-9076-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Armstrong, Stuart |e verfasserin |4 aut | |
245 | 1 | 0 | |a Projective holonomy I: principles and properties |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science + Business Media B.V. 2007 | ||
520 | |a Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and $$Sp(1, \mathbb{H})$$ bundles over a manifold of smaller dimension. | ||
650 | 4 | |a Projective structures | |
650 | 4 | |a Complex projective structures | |
650 | 4 | |a Holonomy | |
650 | 4 | |a Tractor connections | |
650 | 4 | |a Cartan connections | |
773 | 0 | 8 | |i Enthalten in |t Annals of global analysis and geometry |d Springer Netherlands, 1983 |g 33(2007), 1 vom: 12. Juli, Seite 47-69 |w (DE-627)12986224X |w (DE-600)283662-2 |w (DE-576)015173666 |x 0232-704X |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2007 |g number:1 |g day:12 |g month:07 |g pages:47-69 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10455-007-9076-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4307 | ||
951 | |a AR | ||
952 | |d 33 |j 2007 |e 1 |b 12 |c 07 |h 47-69 |
author_variant |
s a sa |
---|---|
matchkey_str |
article:0232704X:2007----::rjcieoooypicpea |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s10455-007-9076-6 doi (DE-627)OLC2060259401 (DE-He213)s10455-007-9076-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Armstrong, Stuart verfasserin aut Projective holonomy I: principles and properties 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media B.V. 2007 Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and $$Sp(1, \mathbb{H})$$ bundles over a manifold of smaller dimension. Projective structures Complex projective structures Holonomy Tractor connections Cartan connections Enthalten in Annals of global analysis and geometry Springer Netherlands, 1983 33(2007), 1 vom: 12. Juli, Seite 47-69 (DE-627)12986224X (DE-600)283662-2 (DE-576)015173666 0232-704X nnns volume:33 year:2007 number:1 day:12 month:07 pages:47-69 https://doi.org/10.1007/s10455-007-9076-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4307 AR 33 2007 1 12 07 47-69 |
spelling |
10.1007/s10455-007-9076-6 doi (DE-627)OLC2060259401 (DE-He213)s10455-007-9076-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Armstrong, Stuart verfasserin aut Projective holonomy I: principles and properties 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media B.V. 2007 Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and $$Sp(1, \mathbb{H})$$ bundles over a manifold of smaller dimension. Projective structures Complex projective structures Holonomy Tractor connections Cartan connections Enthalten in Annals of global analysis and geometry Springer Netherlands, 1983 33(2007), 1 vom: 12. Juli, Seite 47-69 (DE-627)12986224X (DE-600)283662-2 (DE-576)015173666 0232-704X nnns volume:33 year:2007 number:1 day:12 month:07 pages:47-69 https://doi.org/10.1007/s10455-007-9076-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4307 AR 33 2007 1 12 07 47-69 |
allfields_unstemmed |
10.1007/s10455-007-9076-6 doi (DE-627)OLC2060259401 (DE-He213)s10455-007-9076-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Armstrong, Stuart verfasserin aut Projective holonomy I: principles and properties 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media B.V. 2007 Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and $$Sp(1, \mathbb{H})$$ bundles over a manifold of smaller dimension. Projective structures Complex projective structures Holonomy Tractor connections Cartan connections Enthalten in Annals of global analysis and geometry Springer Netherlands, 1983 33(2007), 1 vom: 12. Juli, Seite 47-69 (DE-627)12986224X (DE-600)283662-2 (DE-576)015173666 0232-704X nnns volume:33 year:2007 number:1 day:12 month:07 pages:47-69 https://doi.org/10.1007/s10455-007-9076-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4307 AR 33 2007 1 12 07 47-69 |
allfieldsGer |
10.1007/s10455-007-9076-6 doi (DE-627)OLC2060259401 (DE-He213)s10455-007-9076-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Armstrong, Stuart verfasserin aut Projective holonomy I: principles and properties 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media B.V. 2007 Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and $$Sp(1, \mathbb{H})$$ bundles over a manifold of smaller dimension. Projective structures Complex projective structures Holonomy Tractor connections Cartan connections Enthalten in Annals of global analysis and geometry Springer Netherlands, 1983 33(2007), 1 vom: 12. Juli, Seite 47-69 (DE-627)12986224X (DE-600)283662-2 (DE-576)015173666 0232-704X nnns volume:33 year:2007 number:1 day:12 month:07 pages:47-69 https://doi.org/10.1007/s10455-007-9076-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4307 AR 33 2007 1 12 07 47-69 |
allfieldsSound |
10.1007/s10455-007-9076-6 doi (DE-627)OLC2060259401 (DE-He213)s10455-007-9076-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Armstrong, Stuart verfasserin aut Projective holonomy I: principles and properties 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media B.V. 2007 Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and $$Sp(1, \mathbb{H})$$ bundles over a manifold of smaller dimension. Projective structures Complex projective structures Holonomy Tractor connections Cartan connections Enthalten in Annals of global analysis and geometry Springer Netherlands, 1983 33(2007), 1 vom: 12. Juli, Seite 47-69 (DE-627)12986224X (DE-600)283662-2 (DE-576)015173666 0232-704X nnns volume:33 year:2007 number:1 day:12 month:07 pages:47-69 https://doi.org/10.1007/s10455-007-9076-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4307 AR 33 2007 1 12 07 47-69 |
language |
English |
source |
Enthalten in Annals of global analysis and geometry 33(2007), 1 vom: 12. Juli, Seite 47-69 volume:33 year:2007 number:1 day:12 month:07 pages:47-69 |
sourceStr |
Enthalten in Annals of global analysis and geometry 33(2007), 1 vom: 12. Juli, Seite 47-69 volume:33 year:2007 number:1 day:12 month:07 pages:47-69 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Projective structures Complex projective structures Holonomy Tractor connections Cartan connections |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annals of global analysis and geometry |
authorswithroles_txt_mv |
Armstrong, Stuart @@aut@@ |
publishDateDaySort_date |
2007-07-12T00:00:00Z |
hierarchy_top_id |
12986224X |
dewey-sort |
3510 |
id |
OLC2060259401 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060259401</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502194635.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10455-007-9076-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060259401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10455-007-9076-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Armstrong, Stuart</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Projective holonomy I: principles and properties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science + Business Media B.V. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and $$Sp(1, \mathbb{H})$$ bundles over a manifold of smaller dimension.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projective structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex projective structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holonomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tractor connections</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cartan connections</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of global analysis and geometry</subfield><subfield code="d">Springer Netherlands, 1983</subfield><subfield code="g">33(2007), 1 vom: 12. Juli, Seite 47-69</subfield><subfield code="w">(DE-627)12986224X</subfield><subfield code="w">(DE-600)283662-2</subfield><subfield code="w">(DE-576)015173666</subfield><subfield code="x">0232-704X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:47-69</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10455-007-9076-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">07</subfield><subfield code="h">47-69</subfield></datafield></record></collection>
|
author |
Armstrong, Stuart |
spellingShingle |
Armstrong, Stuart ddc 510 ssgn 17,1 misc Projective structures misc Complex projective structures misc Holonomy misc Tractor connections misc Cartan connections Projective holonomy I: principles and properties |
authorStr |
Armstrong, Stuart |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12986224X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0232-704X |
topic_title |
510 VZ 17,1 ssgn Projective holonomy I: principles and properties Projective structures Complex projective structures Holonomy Tractor connections Cartan connections |
topic |
ddc 510 ssgn 17,1 misc Projective structures misc Complex projective structures misc Holonomy misc Tractor connections misc Cartan connections |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Projective structures misc Complex projective structures misc Holonomy misc Tractor connections misc Cartan connections |
topic_browse |
ddc 510 ssgn 17,1 misc Projective structures misc Complex projective structures misc Holonomy misc Tractor connections misc Cartan connections |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annals of global analysis and geometry |
hierarchy_parent_id |
12986224X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annals of global analysis and geometry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12986224X (DE-600)283662-2 (DE-576)015173666 |
title |
Projective holonomy I: principles and properties |
ctrlnum |
(DE-627)OLC2060259401 (DE-He213)s10455-007-9076-6-p |
title_full |
Projective holonomy I: principles and properties |
author_sort |
Armstrong, Stuart |
journal |
Annals of global analysis and geometry |
journalStr |
Annals of global analysis and geometry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
47 |
author_browse |
Armstrong, Stuart |
container_volume |
33 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Armstrong, Stuart |
doi_str_mv |
10.1007/s10455-007-9076-6 |
dewey-full |
510 |
title_sort |
projective holonomy i: principles and properties |
title_auth |
Projective holonomy I: principles and properties |
abstract |
Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and $$Sp(1, \mathbb{H})$$ bundles over a manifold of smaller dimension. © Springer Science + Business Media B.V. 2007 |
abstractGer |
Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and $$Sp(1, \mathbb{H})$$ bundles over a manifold of smaller dimension. © Springer Science + Business Media B.V. 2007 |
abstract_unstemmed |
Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and $$Sp(1, \mathbb{H})$$ bundles over a manifold of smaller dimension. © Springer Science + Business Media B.V. 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4307 |
container_issue |
1 |
title_short |
Projective holonomy I: principles and properties |
url |
https://doi.org/10.1007/s10455-007-9076-6 |
remote_bool |
false |
ppnlink |
12986224X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10455-007-9076-6 |
up_date |
2024-07-04T00:56:56.349Z |
_version_ |
1803607989392769024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060259401</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502194635.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10455-007-9076-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060259401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10455-007-9076-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Armstrong, Stuart</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Projective holonomy I: principles and properties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science + Business Media B.V. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and $$Sp(1, \mathbb{H})$$ bundles over a manifold of smaller dimension.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projective structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex projective structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holonomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tractor connections</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cartan connections</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of global analysis and geometry</subfield><subfield code="d">Springer Netherlands, 1983</subfield><subfield code="g">33(2007), 1 vom: 12. Juli, Seite 47-69</subfield><subfield code="w">(DE-627)12986224X</subfield><subfield code="w">(DE-600)283662-2</subfield><subfield code="w">(DE-576)015173666</subfield><subfield code="x">0232-704X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:47-69</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10455-007-9076-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">07</subfield><subfield code="h">47-69</subfield></datafield></record></collection>
|
score |
7.401231 |