Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion
Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (M...
Ausführliche Beschreibung
Autor*in: |
Hutem, Artit [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical chemistry - Springer Netherlands, 1987, 50(2012), 5 vom: 04. Jan., Seite 1262-1276 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2012 ; number:5 ; day:04 ; month:01 ; pages:1262-1276 |
Links: |
---|
DOI / URN: |
10.1007/s10910-011-9966-5 |
---|
Katalog-ID: |
OLC2060415829 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060415829 | ||
003 | DE-627 | ||
005 | 20230508112405.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10910-011-9966-5 |2 doi | |
035 | |a (DE-627)OLC2060415829 | ||
035 | |a (DE-He213)s10910-011-9966-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 540 |q VZ |
100 | 1 | |a Hutem, Artit |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2011 | ||
520 | |a Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999), assuming the same Lennard-Jones potential as before. The second virial coefficient (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model are compatible to the experimental data [19] The temperature at which B2(T) → 0 is called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T) = 9.82958 × $ 10^{−6} $ ($ cm^{3} $/mol). | ||
650 | 4 | |a The second virial coefficient | |
650 | 4 | |a The third virial coefficient | |
650 | 4 | |a Cluster expansion | |
650 | 4 | |a Inert gases | |
700 | 1 | |a Boonchui, Sutee |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical chemistry |d Springer Netherlands, 1987 |g 50(2012), 5 vom: 04. Jan., Seite 1262-1276 |w (DE-627)129246441 |w (DE-600)59132-4 |w (DE-576)27906036X |x 0259-9791 |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2012 |g number:5 |g day:04 |g month:01 |g pages:1262-1276 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10910-011-9966-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4012 | ||
951 | |a AR | ||
952 | |d 50 |j 2012 |e 5 |b 04 |c 01 |h 1262-1276 |
author_variant |
a h ah s b sb |
---|---|
matchkey_str |
article:02599791:2012----::ueiaeautooscnadhrvracefcetosmietaeva |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s10910-011-9966-5 doi (DE-627)OLC2060415829 (DE-He213)s10910-011-9966-5-p DE-627 ger DE-627 rakwb eng 510 540 VZ Hutem, Artit verfasserin aut Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999), assuming the same Lennard-Jones potential as before. The second virial coefficient (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model are compatible to the experimental data [19] The temperature at which B2(T) → 0 is called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T) = 9.82958 × $ 10^{−6} $ ($ cm^{3} $/mol). The second virial coefficient The third virial coefficient Cluster expansion Inert gases Boonchui, Sutee aut Enthalten in Journal of mathematical chemistry Springer Netherlands, 1987 50(2012), 5 vom: 04. Jan., Seite 1262-1276 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:50 year:2012 number:5 day:04 month:01 pages:1262-1276 https://doi.org/10.1007/s10910-011-9966-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4012 AR 50 2012 5 04 01 1262-1276 |
spelling |
10.1007/s10910-011-9966-5 doi (DE-627)OLC2060415829 (DE-He213)s10910-011-9966-5-p DE-627 ger DE-627 rakwb eng 510 540 VZ Hutem, Artit verfasserin aut Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999), assuming the same Lennard-Jones potential as before. The second virial coefficient (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model are compatible to the experimental data [19] The temperature at which B2(T) → 0 is called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T) = 9.82958 × $ 10^{−6} $ ($ cm^{3} $/mol). The second virial coefficient The third virial coefficient Cluster expansion Inert gases Boonchui, Sutee aut Enthalten in Journal of mathematical chemistry Springer Netherlands, 1987 50(2012), 5 vom: 04. Jan., Seite 1262-1276 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:50 year:2012 number:5 day:04 month:01 pages:1262-1276 https://doi.org/10.1007/s10910-011-9966-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4012 AR 50 2012 5 04 01 1262-1276 |
allfields_unstemmed |
10.1007/s10910-011-9966-5 doi (DE-627)OLC2060415829 (DE-He213)s10910-011-9966-5-p DE-627 ger DE-627 rakwb eng 510 540 VZ Hutem, Artit verfasserin aut Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999), assuming the same Lennard-Jones potential as before. The second virial coefficient (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model are compatible to the experimental data [19] The temperature at which B2(T) → 0 is called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T) = 9.82958 × $ 10^{−6} $ ($ cm^{3} $/mol). The second virial coefficient The third virial coefficient Cluster expansion Inert gases Boonchui, Sutee aut Enthalten in Journal of mathematical chemistry Springer Netherlands, 1987 50(2012), 5 vom: 04. Jan., Seite 1262-1276 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:50 year:2012 number:5 day:04 month:01 pages:1262-1276 https://doi.org/10.1007/s10910-011-9966-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4012 AR 50 2012 5 04 01 1262-1276 |
allfieldsGer |
10.1007/s10910-011-9966-5 doi (DE-627)OLC2060415829 (DE-He213)s10910-011-9966-5-p DE-627 ger DE-627 rakwb eng 510 540 VZ Hutem, Artit verfasserin aut Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999), assuming the same Lennard-Jones potential as before. The second virial coefficient (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model are compatible to the experimental data [19] The temperature at which B2(T) → 0 is called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T) = 9.82958 × $ 10^{−6} $ ($ cm^{3} $/mol). The second virial coefficient The third virial coefficient Cluster expansion Inert gases Boonchui, Sutee aut Enthalten in Journal of mathematical chemistry Springer Netherlands, 1987 50(2012), 5 vom: 04. Jan., Seite 1262-1276 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:50 year:2012 number:5 day:04 month:01 pages:1262-1276 https://doi.org/10.1007/s10910-011-9966-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4012 AR 50 2012 5 04 01 1262-1276 |
allfieldsSound |
10.1007/s10910-011-9966-5 doi (DE-627)OLC2060415829 (DE-He213)s10910-011-9966-5-p DE-627 ger DE-627 rakwb eng 510 540 VZ Hutem, Artit verfasserin aut Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999), assuming the same Lennard-Jones potential as before. The second virial coefficient (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model are compatible to the experimental data [19] The temperature at which B2(T) → 0 is called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T) = 9.82958 × $ 10^{−6} $ ($ cm^{3} $/mol). The second virial coefficient The third virial coefficient Cluster expansion Inert gases Boonchui, Sutee aut Enthalten in Journal of mathematical chemistry Springer Netherlands, 1987 50(2012), 5 vom: 04. Jan., Seite 1262-1276 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:50 year:2012 number:5 day:04 month:01 pages:1262-1276 https://doi.org/10.1007/s10910-011-9966-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4012 AR 50 2012 5 04 01 1262-1276 |
language |
English |
source |
Enthalten in Journal of mathematical chemistry 50(2012), 5 vom: 04. Jan., Seite 1262-1276 volume:50 year:2012 number:5 day:04 month:01 pages:1262-1276 |
sourceStr |
Enthalten in Journal of mathematical chemistry 50(2012), 5 vom: 04. Jan., Seite 1262-1276 volume:50 year:2012 number:5 day:04 month:01 pages:1262-1276 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
The second virial coefficient The third virial coefficient Cluster expansion Inert gases |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical chemistry |
authorswithroles_txt_mv |
Hutem, Artit @@aut@@ Boonchui, Sutee @@aut@@ |
publishDateDaySort_date |
2012-01-04T00:00:00Z |
hierarchy_top_id |
129246441 |
dewey-sort |
3510 |
id |
OLC2060415829 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060415829</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508112405.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10910-011-9966-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060415829</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10910-011-9966-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hutem, Artit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999), assuming the same Lennard-Jones potential as before. The second virial coefficient (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model are compatible to the experimental data [19] The temperature at which B2(T) → 0 is called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T) = 9.82958 × $ 10^{−6} $ ($ cm^{3} $/mol).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The second virial coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The third virial coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inert gases</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boonchui, Sutee</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical chemistry</subfield><subfield code="d">Springer Netherlands, 1987</subfield><subfield code="g">50(2012), 5 vom: 04. Jan., Seite 1262-1276</subfield><subfield code="w">(DE-627)129246441</subfield><subfield code="w">(DE-600)59132-4</subfield><subfield code="w">(DE-576)27906036X</subfield><subfield code="x">0259-9791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:5</subfield><subfield code="g">day:04</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1262-1276</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10910-011-9966-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2012</subfield><subfield code="e">5</subfield><subfield code="b">04</subfield><subfield code="c">01</subfield><subfield code="h">1262-1276</subfield></datafield></record></collection>
|
author |
Hutem, Artit |
spellingShingle |
Hutem, Artit ddc 510 misc The second virial coefficient misc The third virial coefficient misc Cluster expansion misc Inert gases Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion |
authorStr |
Hutem, Artit |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129246441 |
format |
Article |
dewey-ones |
510 - Mathematics 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0259-9791 |
topic_title |
510 540 VZ Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion The second virial coefficient The third virial coefficient Cluster expansion Inert gases |
topic |
ddc 510 misc The second virial coefficient misc The third virial coefficient misc Cluster expansion misc Inert gases |
topic_unstemmed |
ddc 510 misc The second virial coefficient misc The third virial coefficient misc Cluster expansion misc Inert gases |
topic_browse |
ddc 510 misc The second virial coefficient misc The third virial coefficient misc Cluster expansion misc Inert gases |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical chemistry |
hierarchy_parent_id |
129246441 |
dewey-tens |
510 - Mathematics 540 - Chemistry |
hierarchy_top_title |
Journal of mathematical chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X |
title |
Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion |
ctrlnum |
(DE-627)OLC2060415829 (DE-He213)s10910-011-9966-5-p |
title_full |
Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion |
author_sort |
Hutem, Artit |
journal |
Journal of mathematical chemistry |
journalStr |
Journal of mathematical chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
1262 |
author_browse |
Hutem, Artit Boonchui, Sutee |
container_volume |
50 |
class |
510 540 VZ |
format_se |
Aufsätze |
author-letter |
Hutem, Artit |
doi_str_mv |
10.1007/s10910-011-9966-5 |
dewey-full |
510 540 |
title_sort |
numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion |
title_auth |
Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion |
abstract |
Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999), assuming the same Lennard-Jones potential as before. The second virial coefficient (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model are compatible to the experimental data [19] The temperature at which B2(T) → 0 is called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T) = 9.82958 × $ 10^{−6} $ ($ cm^{3} $/mol). © Springer Science+Business Media, LLC 2011 |
abstractGer |
Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999), assuming the same Lennard-Jones potential as before. The second virial coefficient (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model are compatible to the experimental data [19] The temperature at which B2(T) → 0 is called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T) = 9.82958 × $ 10^{−6} $ ($ cm^{3} $/mol). © Springer Science+Business Media, LLC 2011 |
abstract_unstemmed |
Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999), assuming the same Lennard-Jones potential as before. The second virial coefficient (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model are compatible to the experimental data [19] The temperature at which B2(T) → 0 is called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T) = 9.82958 × $ 10^{−6} $ ($ cm^{3} $/mol). © Springer Science+Business Media, LLC 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4012 |
container_issue |
5 |
title_short |
Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion |
url |
https://doi.org/10.1007/s10910-011-9966-5 |
remote_bool |
false |
author2 |
Boonchui, Sutee |
author2Str |
Boonchui, Sutee |
ppnlink |
129246441 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10910-011-9966-5 |
up_date |
2024-07-04T01:17:18.989Z |
_version_ |
1803609271424778240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060415829</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508112405.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10910-011-9966-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060415829</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10910-011-9966-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hutem, Artit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this project we evaluate second virial coefficient of some inert gases via classical cluster expansion, assuming each atomic pair interaction is of Lennard-Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999), assuming the same Lennard-Jones potential as before. The second virial coefficient (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model are compatible to the experimental data [19] The temperature at which B2(T) → 0 is called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T) = 9.82958 × $ 10^{−6} $ ($ cm^{3} $/mol).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The second virial coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The third virial coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inert gases</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boonchui, Sutee</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical chemistry</subfield><subfield code="d">Springer Netherlands, 1987</subfield><subfield code="g">50(2012), 5 vom: 04. Jan., Seite 1262-1276</subfield><subfield code="w">(DE-627)129246441</subfield><subfield code="w">(DE-600)59132-4</subfield><subfield code="w">(DE-576)27906036X</subfield><subfield code="x">0259-9791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:5</subfield><subfield code="g">day:04</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1262-1276</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10910-011-9966-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2012</subfield><subfield code="e">5</subfield><subfield code="b">04</subfield><subfield code="c">01</subfield><subfield code="h">1262-1276</subfield></datafield></record></collection>
|
score |
7.402316 |